scholarly journals Effect of the inlet flow rate ratio on liquid efficiency in a T-shaped micromixer at low Reynolds numbers

2020 ◽  
Vol 1677 ◽  
pp. 012138
Author(s):  
A Yu Kravtsova ◽  
M V Kashkarova ◽  
P E Ianko ◽  
A V Bilsky ◽  
Y V Kravtsov
2015 ◽  
Vol 778 ◽  
pp. 653-668 ◽  
Author(s):  
A. Evangelio ◽  
F. Campo-Cortés ◽  
J. M. Gordillo

We provide a detailed physical description of the bubble formation processes taking place in a type of flow where the liquid pressure gradient can be straightforwardly controlled. The analysis, which is supported by an exhaustive experimental study in which the liquid viscosity is varied by three orders of magnitude, provides closed expressions for both the bubbling frequencies and the bubble diameters. Different equations are obtained depending on the values of the three dimensionless parameters characterizing this physical situation, namely the Weber and Reynolds numbers and the gas to liquid flow rate ratio. Since both the inertia dominated and viscous dominated bubbling regimes are simply described in terms of the local pressure gradient and the flow rate ratio, the same types of ideas can be applied in the design of bubble makers in which the pressure gradients are controlled in completely different ways.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tianlong Zhang ◽  
Misuzu Namoto ◽  
Kazunori Okano ◽  
Eri Akita ◽  
Norihiro Teranishi ◽  
...  

AbstractMicrofluidic focusing of particles (both synthetic and biological), which enables precise control over the positions of particles in a tightly focused stream, is a prerequisite step for the downstream processing, such as detection, trapping and separation. In this study, we propose a novel hydrodynamic focusing method by taking advantage of open v-shaped microstructures on a glass substrate engraved by femtosecond pulse (fs) laser. The fs laser engraved microstructures were capable of focusing polystyrene particles and live cells in rectangular microchannels at relatively low Reynolds numbers (Re). Numerical simulations were performed to explain the mechanisms of particle focusing and experiments were carried out to investigate the effects of groove depth, groove number and flow rate on the performance of the groove-embedded microchannel for particle focusing. We found out that 10-µm polystyrene particles are directed toward the channel center under the effects of the groove-induced secondary flows in low-Re flows, e.g. Re < 1. Moreover, we achieved continuous focusing of live cells with different sizes ranging from 10 to 15 µm, i.e. human T-cell lymphoma Jurkat cells, rat adrenal pheochromocytoma PC12 cells and dog kidney MDCK cells. The glass grooves fabricated by fs laser are expected to be integrated with on-chip detection components, such as contact imaging and fluorescence lifetime-resolved imaging, for various biological and biomedical applications, where particle focusing at a relatively low flow rate is desirable.


1965 ◽  
Vol 180 (1) ◽  
pp. 331-356 ◽  
Author(s):  
L. J. Kastner ◽  
J. C. McVeigh

In view of the importance of accurate measurement of flow rate at low Reynolds numbers, there have been numerous attempts to develop metering devices having constant discharge coefficients in the range of pipe Reynolds numbers between about 3000 and 200 and even below this latter value, and some of these attempts have achieved a reasonable degrees of success. Nevertheless, some confusion exists regarding the dimensions and range of utility of certain designs which have been recommended and further information is necessary in order that the situation may be clarified. The aims of the present investigation, which is believed to be wider in scope than any published in this field in recent years, were to review and correlate existing knowledge and to make an experimental study of the properties of various types of orifice in the low range of Reynolds numbers. Arising from this it was hoped that a design might be evolved which not only had a satisfactorily constant discharge coefficient throughout the range but was also simple to manufacture and reproduce, even for small orifice diameters of the order of 0.5 in or less, and it is believed that some success in attaining this aim was achieved. The first section of the paper contains a review of previous investigations classified into three main groups. In the second part of the paper, experiments with various types of orifice plate are described and it is shown that a properly proportioned single-bevelled orifice has as good a performance in the low Reynolds number range as that of any of the more complicated shapes.


2020 ◽  
Vol 21 (6) ◽  
pp. 621
Author(s):  
Veerapathiran Thangaraj Gopinathan ◽  
John Bruce Ralphin Rose ◽  
Mohanram Surya

Aerodynamic efficiency of an airplane wing can be improved either by increasing its lift generation tendency or by reducing the drag. Recently, Bio-inspired designs have been received greater attention for the geometric modifications of airplane wings. One of the bio-inspired designs contains sinusoidal Humpback Whale (HW) tubercles, i.e., protuberances exist at the wing leading edge (LE). The tubercles have excellent flow control characteristics at low Reynolds numbers. The present work describes about the effect of tubercles on swept back wing performance at various Angle of Attack (AoA). NACA 0015 and NACA 4415 airfoils are used for swept back wing design with sweep angle about 30°. The modified wings (HUMP 0015 A, HUMP 0015 B, HUMP 4415 A, HUMP 4415 B) are designed with two amplitude to wavelength ratios (η) of 0.1 & 0.24 for the performance analysis. It is a novel effort to analyze the tubercle vortices along the span that induce additional flow energy especially, behind the tubercles peak and trough region. Subsequently, Co-efficient of Lift (CL), Co-efficient of Drag (CD) and boundary layer pressure gradients also predicted for modified and baseline (smooth LE) models in the pre & post-stall regimes. It was observed that the tubercles increase the performance of swept back wings by the enhanced CL/CD ratio in the pre-stall AoA region. Interestingly, the flow separation region behind the centerline of tubercles and formation of Laminar Separation Bubbles (LSB) were asymmetric because of the sweep.


2010 ◽  
Vol 1 (1-2) ◽  
pp. 15-20 ◽  
Author(s):  
B. Bolló

Abstract The two-dimensional flow around a stationary heated circular cylinder at low Reynolds numbers of 50 < Re < 210 is investigated numerically using the FLUENT commercial software package. The dimensionless vortex shedding frequency (St) reduces with increasing temperature at a given Reynolds number. The effective temperature concept was used and St-Re data were successfully transformed to the St-Reeff curve. Comparisons include root-mean-square values of the lift coefficient and Nusselt number. The results agree well with available data in the literature.


Sign in / Sign up

Export Citation Format

Share Document