scholarly journals Adsorption Kinetic and Isotherm of Solution Pair of Methylene Blue and Crystal Violet by Algae-Silica-Magnetite Hybrid Adsorbent on Porphyridium sp. Algae

2021 ◽  
Vol 1751 ◽  
pp. 012084
Author(s):  
D Permatasari ◽  
Buhani ◽  
M Rilyanti ◽  
Suharso
2015 ◽  
Vol 14 (04) ◽  
pp. 1550009 ◽  
Author(s):  
N. M. Mubarak ◽  
Y. T. Fo ◽  
Hikmat Said Al-Salim ◽  
J. N. Sahu ◽  
E. C. Abdullah ◽  
...  

The study on the removal of methylene blue (MB) and orange-G dyes using magnetic biochar derived from the empty fruit bunch (EFB) was carried out. Process parameters such as pH, adsorbent dosage, agitation speed and contact time were optimized using Design-Expert Software v.6.0.8. The statistical analysis reveals that the optimum conditions for the maximum adsorption of MB are at pH 2 and pH 10, dosage 1.0 g, and agitation speed and contact time of 125 rpm and 120 min respectively. While for orange-G, at pH 2, dosage 1.0 g, and agitation speed and contact time of 125 rpm and 120 min respectively. The maximum adsorption capacity of 31.25 mg/g and 32.36 mg/g for MB and orange-G respectively. The adsorption kinetic for both dyes obeyed pseudo-second order.


2019 ◽  
Vol 7 (2) ◽  
pp. 240-246
Author(s):  
Kaur Harpreet ◽  
Kaur Harpreet ◽  
Vandana Kamboj ◽  
Vandana Kamboj

Water is the most crucial thing to mankind and so its contamination by various agencies is posing a threat to the natural balance. So, in the present work, the efficiency of various adsorbents derived from plant waste, to remove different dyes from aqueous solution was evaluated. Parameters for study were contact time, concentration and pH. Various combinations of plant ashes were used for the study. It was found that adsorbent prepared from the combination of orange peels, pomegranate and banana peels ashes, exhibited good adsorption capacity for methylene blue, congo red and crystal violet. All these dyes were completely removed from the aqueous solution while methyl orange was not removed. Congo red was removed completely within 40 min of contact with the adsorbent while methyl orange took 3 hrs to be removed to the extent of 48% only. The adsorption coefficient of congo red was found to be 2.33 while value for methylene blue and crystal violet was 1 and 1.66 respectively. The characterization of adsorbent was done by Scanning Electron Microscopy and IR spectroscopy. SEM image revealed the surface of adsorbent to be made of differential pores. From the results it became evident that the low-cost adsorbent could be used as a replacement for costly traditional methods of removing colorants from water.


Author(s):  
Xiaoting Zhang ◽  
Qian Wu ◽  
Shuze Tang ◽  
William W Riley ◽  
Zhenqiang Chen

This study was conducted to better understand the mechanism of Vibrio Parahaemolyticus biofilm formation and to assess the inactivation effects of methylene blue-mediated photodynamic inactivation (PDI) technology as a preventative measure. Optical microscopy, following crystal violet staining, was used to observe the kinetics of V. parahaemolyticus biofilm formation. The crystal violet-based assay was performed in microtiter plates, and it was employed to determine which factors were most influential in the formation of the biofilms. Colony counting and confocal laser scanning microscopy (CLSM) were used to test the inactivation effect of methylene blue-mediated photodynamic technology on the biofilms. V. parahaemolyticus has the ability to form biofilms, as evidenced by their immediate adherence to glass surfaces and rapid maturity, within 24 h. High (7%) or low (0.5%) salinity was not conducive to the formation of biofilms, and rotational speed greater than 130 rpm also inhibited the process. A 4.05 log reduction in the concentration of viable biofilm cells was obtained with 100 μg/mL methylene blue and 20 min irradiation (24.996 J/cm2), but planktonic cells were more susceptible to the methylene blue-mediated photodynamic reaction (5.46 log reduction). The results presented here show that the methylene blue-mediated PDI technology is an effective means to inactivate V. parahaemolyticus by disrupting its membrane integrity and to inhibit the pathogen’s formation of protective biofilms. This technology is a valid tool that can be used to enhance food safety in the sea food industry.


2019 ◽  
Vol 6 (1) ◽  
pp. 184-191 ◽  
Author(s):  
Satyanarayana K. Konavarapu ◽  
Anindita Goswami ◽  
Anaparthi Ganesh Kumar ◽  
Susanta Banerjee ◽  
Kumar Biradha

Four new MOFs were shown to have appreciable proton conductivities, selective adsorption of water vapor over nitrogen and a tendency to selectively adsorb cationic dyes such as methylene blue and crystal violet.


2018 ◽  
Vol 250 ◽  
pp. 468-476 ◽  
Author(s):  
Jiwei Liu ◽  
Yongmei Wang ◽  
Yi Fang ◽  
Teza Mwamulima ◽  
Shaoxian Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document