Removal of Methylene Blue and Orange-G from Waste Water Using Magnetic Biochar

2015 ◽  
Vol 14 (04) ◽  
pp. 1550009 ◽  
Author(s):  
N. M. Mubarak ◽  
Y. T. Fo ◽  
Hikmat Said Al-Salim ◽  
J. N. Sahu ◽  
E. C. Abdullah ◽  
...  

The study on the removal of methylene blue (MB) and orange-G dyes using magnetic biochar derived from the empty fruit bunch (EFB) was carried out. Process parameters such as pH, adsorbent dosage, agitation speed and contact time were optimized using Design-Expert Software v.6.0.8. The statistical analysis reveals that the optimum conditions for the maximum adsorption of MB are at pH 2 and pH 10, dosage 1.0 g, and agitation speed and contact time of 125 rpm and 120 min respectively. While for orange-G, at pH 2, dosage 1.0 g, and agitation speed and contact time of 125 rpm and 120 min respectively. The maximum adsorption capacity of 31.25 mg/g and 32.36 mg/g for MB and orange-G respectively. The adsorption kinetic for both dyes obeyed pseudo-second order.

2013 ◽  
Vol 12 (06) ◽  
pp. 1350044 ◽  
Author(s):  
N. M. MUBARAK ◽  
M. RUTHIRAAN ◽  
J. N. SAHU ◽  
E. C. ABDULLAH ◽  
N. S. JAYAKUMAR ◽  
...  

The effectiveness of stannum ( Sn 2+) removal from aqueous solution by using magnetic biochar and functionalized multiwalled carbon nanotube (FMWCNT) was investigated. The effect of various factors, namely pH, adsorbent dosage, agitation speed and contact time was statistically studied through analysis of variance (ANOVA). Statistical analysis revealed that the optimum conditions for the highest removal of Sn 2+ are at pH 5, dosage 0.1 g with agitation speed and time of 100 rpm and 90 min, respectively. At the initial concentration of 0.1 mg/L, the removal efficiency of Sn 2+ using FMWCNTs was 93% and 85% with magnetic biochar. The Langmuir and Freundlich constant for both FMWCNTs and magnetic biochar were 13.397 L/mg, 18.634 L/mg and 17.719 L/mg, 25.204 L/mg, respectively. Hence, results prove that FMWCNTs are a better adsorbent with a higher adsorption capacity compared to magnetic biochar. Adsorption kinetic obeyed pseudo-second-order.


Author(s):  
Alica Pastierová ◽  
Maroš Sirotiak

Abstract This paper presents a study into dynamic behaviour of the methylene blue adsorption (MB) on activated carbon. Effect of four parameters were studied: effect of the adsorbent dosage, effect of contact time, effect of pH, and effect of the initial concentration of methylene blue. The adsorption kinetic data were modelled using the pseudo-first and pseudo-second orders. Results show that, based on the experimental data, the pseudo-second order could be considered satisfactory. Thermodynamic parameters proved that adsorption of dye was spontaneous owing to increase in temperature and endothermic nature. Taguchi method was applied to determine the optimum conditions for removal of methylene blue by activated carbon. The optimum conditions were found to be pH = 7, contact time 60 min, initial concentration of MB 4 mg/L.


2013 ◽  
Vol 68 (2) ◽  
pp. 441-447 ◽  
Author(s):  
Diego S. Paz ◽  
Alexandre Baiotto ◽  
Marcio Schwaab ◽  
Marcio A. Mazutti ◽  
Mariana M. Bassaco ◽  
...  

In this study papaya seeds were used to remove methylene blue dye from aqueous solution. Papaya seeds were characterized as possessing a macro/mesoporous texture and large pore size. Studies were carried out in batches to evaluate the effect of contact time and pH (2–12) on the removal of dye. It was observed that the adsorption of dye was better in the basic region (pH 12). The equilibrium data were analyzed using Langmuir, Freundlich, Dubinin–Raduschkevich, Tempkin, Jovanovich, Redlich–Peterson, Sips, Toth and Radke–Prausnitz isotherms. The equilibrium data were best described by the Langmuir isotherm with a maximum adsorption capacity of 637.29 mg g–1. Adsorption kinetic data were fitted using the pseudo-first-order and pseudo-second-order model. The adsorption kinetic is very fast and was best described by the pseudo-second-order model.


2021 ◽  
Author(s):  
Sabarish Radoor ◽  
Jasila Karayil ◽  
Aswathy Jayakumar ◽  
Jyotishkumar Parameswaranpillai ◽  
Suchart Siengchin

Abstract In the present work, we modified ZSM-5 zeolite using a bio polymer poly (diallyl dimethyl ammonium chloride) and employed it for the removal of cationic dye, methylene blue from aqueous solution. The chemical and physical properties of the modified ZSM-5 zeolite were investigated using XRD, FTIR, SEM, TEM, nitrogen adsorption, TGA and 27Al NMR. Modified ZSM-5 zeolite possesses high surface area and pore diameter which was confirmed from SEM, TEM and nitrogen adsorption analysis. Adsorption of methylene blue on zeolite was investigated by batch adsorption technique. The effect of different parameters such as zeolite dosage, initial methylene blue concentration, temperature, pH and contact time on the adsorption process was discussed. Maximum adsorption capacity (4.31 mg/g) was achieved using 0.1g of modified ZSM-5 zeolite at the optimum conditions (initial dye concentration: 10 mg/L, pH: 10, temperature:30oC and contact time: 300 min). The experimental data were fitted into Langmuir and Freundlich models and the results indicate that the adsorption process followed Freundlich isotherm. Kinetic data were investigated using pseudo-first-order and pseudo-second-order models. Kinetic analysis indicates that pseudo-second-order model is more suitable to describe adsorption of MB on modified ZSM-5 zeolite. The reusability test suggests that the adsorbent could be reused at least six times without significant loss in removal efficiency.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2473
Author(s):  
Huiping Zeng ◽  
Wei Qi ◽  
Longxue Zhai ◽  
Fanshuo Wang ◽  
Jie Zhang ◽  
...  

The development of low-cost adsorbent is an urgent need in the field of wastewater treatment. In this study, sludge-based magnetic biochar (SMB) was prepared by pyrolysis of sewage sludge and backwashing iron mud without any chemical agents. The samples were characterized by TGA, XRD, ICP, Organic element analysis, SEM, TEM, VSM and BET. Characterization analysis indicated that the magnetic substance in SMB was Fe3O4, and the saturation magnetization was 25.60 emu·g−1, after the adsorption experiment, SMB could be separated from the solution by a magnet. The batch adsorption experiment of methylene blue (MB) adsorption showed that the adsorption capacities of SMB at 298 K, 308 K and 318 K were 47.44 mg·L−1, 39.35 mg·L−1, and 25.85 mg·L−1, respectively. After one regeneration with hydrochloric acid, the maximum adsorption capacity of the product reached 296.52 mg·g−1. Besides, the adsorption kinetic described well by the pseudo-second order model revealed that the intraparticle diffusion was not just the only rate controlling step in adsorption process. This study gives a reasonable reference for the treatment of sewage sludge and backwashing iron mud. The product could be used as a low-cost adsorbent for MB removal.


2021 ◽  
Vol 947 (1) ◽  
pp. 012015
Author(s):  
Huynh-Vu-Thanh Luong ◽  
Huynh-Giao Dang ◽  
Phuong-Lan Tran-Nguyen ◽  
Diem-Trang Phan-Thi ◽  
Lam-Gia-Hao Dao

Abstract This work aimed to investigate the efficient reduction of methylene blue (MB) by a heterogeneous magnetic nanoparticles/copper (MNs/Cu) Fenton-like catalyst. The MNs/Cu was successfully synthesized in the presence of Citrus aurantifolia extract. The characterizations showed an effective fabrication of Cu onto the surface of MNs. The reduction of MB by the MNs/Cu Fenton-like catalyst presented an efficiency of 99.5% at the optimum conditions, including MNs/Cu dose of 0.1 mg, temperature of 25°C, contact time of 75 min, pH 4.0, and 20 mL H2O2 30%, MB initial concentration of 25 mg/L. The reduction kinetics was well fitted to pseudo-second-order with reaction rate constant of 0.0029 g/mg.min. The main mechanism of the MB reduction due to active oxygen species was pointed out. The decrease of reduction yield at high pH, catalyst dose and MB concentration was elucidated in this study.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Jhonatan R. Guarín ◽  
Juan Carlos Moreno-Pirajan ◽  
Liliana Giraldo

Currently, there is a great pollution of water by the dyes; due to this, several studies have been carried out to remove these compounds. However, the total elimination of these pollutants from the aquatic effluents has represented a great challenge for the scientific community, for which it is necessary to carry out investigations that allow the purification of water. In this work, we studied the bioadsorption of methylene blue on the surface of the biomass obtained from the algae D. antarctica. This material was characterized by SEM and FTIR. To the data obtained in the biosorption experiments, different models of biosorption and kinetics were applied, finding that the best fit to the obtained data is given by applying the pseudo-second-order models and the Toth model, respectively. It was also determined that the maximum adsorption capacity of MB on the surface of the biomass is 702.9 mg/g, which shows that this material has great properties as a bioadsorbent.


2012 ◽  
Vol 66 (8) ◽  
pp. 1699-1707 ◽  
Author(s):  
A. K. Giri ◽  
R. K. Patel ◽  
P. C. Mishra

In this work, the biosorption of As(V) from aqueous solutions by living cells of Bacillus cereus has been reported. The batch biosorption experiments were conducted with respect to biosorbent dosage 0.5 to 15 g/L, pH 2 to 9, contact time 5 to 90 min, initial concentration 1 to 10 mg/L and temperature 10 to 40 °C. The maximum biosorption capacity of B. cereus for As(V) was found to be 30.04 at pH 7.0, at optimum conditions of contact time of 30 min, biomass dosage of 6 g/L, and temperature of 30 ± 2 °C. Biosorption data were fitted to linearly transformed Langmuir isotherms with R2 (correlation coefficient) >0.99. Bacillus cereus cell surface was characterized using AFM and FTIR. The metal ions were desorbed from B. cereus using both 1 M HCl and 1 M HNO3. The pseudo-second-order model was successfully applied to predict the rate constant of biosorption.


2018 ◽  
Vol 83 (1) ◽  
pp. 107-120 ◽  
Author(s):  
Zdravka Velkova ◽  
Gergana Kirova ◽  
Margarita Stoytcheva ◽  
Velizar Gochev

Pretreated waste Streptomyces fradiae biomass was utilized as an eco-friendly sorbent for Congo Red (CR) and Methylene Blue (MB) removal from aqueous solutions. The biosorbent was characterized by Fourier transform infrared spectroscopy. Batch experiments were conducted to study the effect of pH, biosorbent dosage, initial concentration of adsorbates, contact time and temperature on the biosorption of the two dyes. The equilibrium adsorption data were analysed using Freundlich and Langmuir models. Both models fitted well the experimental data. The maximum biosorption capacity of the pretreated Streptomyces fradiae biomass was 46.64 mg g-1 for CR and 59.63 mg g-1 for MB, at a pH 6.0, with the contact time of 120 min, the biosorbent dosage of 2 g dm-3 and the temperature of 298 K. Lagergren and Ho kinetic models were used to analyse the kinetic data obtained from different batch experiments. The biosorption of both dyes followed better the pseudo-second order kinetic model. The calculated values for ?G, ?S, and ?H indicated that the biosorption of CR and MB onto the waste pretreated biomass was feasible, spontaneous, and exothermic in the selected temperature range and conditions.


2018 ◽  
Vol 15 (30) ◽  
pp. 221-240
Author(s):  
E. C. CESARINO ◽  
D. S. MULHOLLAND ◽  
W. FRANCISCO

This study developed a new analytical method using Molecular Absorption Spectroscopy (MAS) to track the ion cover in adsorption solution per peel (mesocarp) of Baru (Dipteryx alata). The adsorption study was conducted at different pH and contact time (kinetic), encountering 4.0 as the best pH for adsorption experimental conditions. The variation of contact time showed a pseudo-second-order adsorption kinetic behavior. The interpretation of the isotherms allowed to approach the Langmuir model with R² of 0.918 and to determine the maximum adsorption capacity (qmáx) as 11.481 mg.g⁻¹. The characterization of biomass by MAS in the Infrared (FT-IR) identified the possible functional groups belonging to protein, fatty acids and lipids, while thermal analysis (TG-DSC) showed a greater removal of inorganic matter by the biomass washed with water. The method underwent analytical validation, being classified as specific, sensitive, linear, robust, precise and accurate, with LD (limit of detection) and LQ (limit of quantification) equal to 3.873 and 12.912 mg.L⁻¹, respectively. The results obtained demonstrated the potential use of mesocarp Baru as a natural adsorbent for copper ions in solution, opening power for future expansion and improvement of the method.


Sign in / Sign up

Export Citation Format

Share Document