scholarly journals Research on Unmanned Ship Control System Based on Fuzzy PID

2021 ◽  
Vol 1852 (2) ◽  
pp. 022066
Author(s):  
Huwei Huo
Author(s):  
C J Field

This paper describes the way in which Systems Engineering has been used to map out and address the technical, operational and regulatory considerations necessary for autonomous platform management of Unmanned Surface Vehicles. Building on an approach originally developed for Unmanned Aerial Vehicles, Model-Based Systems Engineering has been used to derive the context and requirements for this high-level ship control system to ensure that it is properly structured, adaptable and re-useable. Mapping out use cases of the platform systems of a large, complex unmanned ship has allowed the functional requirements to be derived rigorously and therefore informs the selection of the most efficient architecture and interfaces ahead of software creation. This practical application of Systems Engineering has paved the way to the creation of robust, open-architecture control of platform systems which enables vessel autonomy in the Naval domain.


2021 ◽  
pp. 002029402110203
Author(s):  
Cheng-Wei Chu ◽  
Zhi-Chao Zhu ◽  
Hai-Tao Bian ◽  
Jun-Cheng Jiang

In this paper, the changes of oxidation temperature of sulfide corrosion and the deficiency of distributed optical fiber application were analyzed. The test platform of oxidation temperature of sulfide corrosion was established, and the performance test of optical fiber and the simulation of oxidation temperature of sulfide corrosion were realized. The hardware part of the control system used STM32 as the controller, the software part was based on the process characteristics of the controlled object, using MATLAB to carry out the simulation of PID, fuzzy, fuzzy PD plus I, fuzzy PID algorithms, and their performance are evaluated using both single indexes and comprehensive indexes. The experimental results also showed that the proposed fuzzy PID can achieve better control performance with less overshoot and shorter setting time. Therefore, the fuzzy PID was chosen as the temperature control algorithm to build the optical fiber sensor test platform, and an alarm method for testing the oxidation temperature of large area sulfide corrosion based on the optical fiber performance was obtained. Then, considering the influence of spatial resolution on optical fiber sensor, this paper used piecewise PID to simulate the temperature rise process of three stages of sulfurization corrosion and oxidation. The results showed that the alarm method of oxidation temperature of sulfurization corrosion has limitations for small-scale oxidation of sulfurization corrosion, and it needed to be combined with machine learning to identify temperature anomaly.


2013 ◽  
Vol 846-847 ◽  
pp. 313-316 ◽  
Author(s):  
Xiao Yun Zhang

This paper presented a new method based on the Fuzzy self - adaptive PID for BLDCM. This method overcomes some defects of the traditional PID control. Such as lower control precision and worse anti - jamming performance. It dynamic model of BLDCM was built, and then design method for TS fuzzy PID model is given, At last, it compared simulation results of PID control method with TS Fuzzy PID control method. The results show that the TS Fuzzy PID control method has more excellent dynamic antistatic performances, as well as anti-jamming performance. The experiment shows that TS fuzzy PID control has the stronger adaptability robustness and transplant.


2014 ◽  
Vol 945-949 ◽  
pp. 2568-2572
Author(s):  
Si Yuan Wang ◽  
Guang Sheng Ren ◽  
Pan Nie

The test rig for hydro-pneumatic converter used in straddle type monorail vehicles was researched, and its electro-pneumatic proportional control system was set up and simulated based on AMESim/Simulink. Compared fuzzy-PID (Proportion Integral Derivative) controller with PID controller through fuzzy logic tool box in Simulink, the results indicate that, this electro-pneumatic proportional control system can meet design requirements better, and fuzzy-PID controller has higher accuracy and stability than PID controller.


2013 ◽  
Vol 846-847 ◽  
pp. 321-324 ◽  
Author(s):  
Le Peng Song ◽  
Hua Bin Wang

As liquid level cascade system has the character the issue of non-linearity ,time variability and the overshoot,tradition PID control can not meet the requirement of precise molding system. So devise a self-_ adaptive fuzzy PID control .A self-_ adaptive fuzzy PID control combined PID to control calculate way and faintness to control the advantage of method, this text permits water tank to carry on mathematics model to design the double permit a water tank liquid misty PID string class control system. Matlab/Simulink and fuzzy logic toolbox are simulated to the single loop PID control system,the cascade control system and the cascade control system based on fuzzy self-tuning PID were simulated with Simulink. The analysis and simulation results indicate that the character issue of non-linearity ,time variability and the overshoot of the liquid level cascade control system based on a self-_ adaptive fuzzy PID controller are superior to previous of two methods.


2013 ◽  
Vol 706-708 ◽  
pp. 1063-1067
Author(s):  
Hai Feng Lin ◽  
Liu Qing Du ◽  
Li Ping Xiong

The Liquid Surface Pressure Control is the key factor for the guarantee of Low Pressure Die Casting Quality. Regarding to the disadvantages of conventional PID Control such as pressure fluctuation, poor repeatability of the pressure curve, and so on, we propose Liquid Surface Pressure Control System (LSPCS) based on Fuzzy Adaptive PID. Design method of Fuzzy PID Controller has been discussed, and the realization methods of the hardware and software in this system are developed. This proposed system has a good performance in practice.


Sign in / Sign up

Export Citation Format

Share Document