scholarly journals Experimental Fluid Dynamics Applications in Radial Turbomachines: Inlet Recirculation in Centrifugal Compressor, Rotating Stall and Flow in Vaneless Diffuser, and Improvement in Accuracy of CFD for Predicting Flow Fields in a Radial Turbine Rotor

2021 ◽  
Vol 1909 (1) ◽  
pp. 012089
Author(s):  
Hideaki Tamaki ◽  
Satoshi Ouchida ◽  
Masaru Unno
Author(s):  
Zitian Niu ◽  
Zhenzhong Sun ◽  
Baotong Wang ◽  
Xinqian Zheng

Abstract Rotating stall is an important unstable flow phenomenon that leads to performance degradation and limits the stability boundary in centrifugal compressors. The volute is one of the sources to induce the non-axisymmetric flow in a centrifugal compressor, which has an important effect on the performance of compressors. However, the influence of volute on rotating stall is not clear. Therefore, the effects of volute on rotating stall by experimental and numerical simulation have been explored in this paper. It’s shown that one rotating stall cell generates in a specific location and disappears in another specific location of the vaneless diffuser as a result of the distorted flow field caused by the volute. Also, the cells cannot stably rotate in a whole circle. The frequency related to rotating stall captured in the experiment is 43.9% of the impeller passing frequency (IPF), while it is 44.7% of IPF captured by three-dimensional unsteady numerical simulation, which proves the accuracy of the numerical method in this study. The numerical simulation further reveals that the stall cell initialized in a specific location can be split into several cells during the evolution process. The reason for this is that the blockage in the vaneless diffuser induced by rotating stall is weakened by the mainstream from the impeller exit to make one initialized cell disperse into several ones. The volute has an important influence on the generation and evolution process of the rotating stall cells of compressors. By optimizing volute geometry to reduce the distortion of the flow field, it is expected that rotating stall can be weakened or suppressed, which is helpful to widen the operating range of centrifugal compressors.


Author(s):  
E Javanmard ◽  
Sh Mansoorzadeh ◽  
A Pishevar ◽  
J A Mehr

Determination of hydrodynamic coefficients is a vital part of predicting the dynamic behavior of an Autonomous Underwater Vehicle (AUV). The aim of the present study was to determine the drag and lift related hydrodynamic coefficients of a research AUV, using Computational and Experimental Fluid Dynamics methods. Experimental tests were carried out at AUV speed of 1.5 m s-1 for two general cases: I. AUV without control surfaces (Hull) at various angles of attack in order to calculate Hull related hydrodynamic coefficients and II. AUV with control surfaces at zero angle of attack but in different stern angles to calculate hydrodynamic coefficients related to control surfaces. All the experiments carried out in a towing tank were also simulated by a commercial computational fluid dynamics (CFD) code. The hydrodynamic coefficients obtained from the numerical simulations were in close agreement with those obtained from the experiments.


Author(s):  
Chuang Gao ◽  
Weiguang Huang ◽  
Haiqing Liu ◽  
Hongwu Zhang ◽  
Jundang Shi

This paper concerns with the numerical and experimental aspects of both steady and unsteady flow behavior in a centrifugal compressor with vaneless diffuser and downstream collector. Specifically, the appearance of flow instabilities i.e., rotating stall and surge is investigated in great detail. As the first step, the static performance of both stage and component was analyzed and possible root cause of system surge was put forward based on the classic stability theory. Then the unsteady pressure data was utilized to find rotating stall and surge in frequency domain which could be classified as mild surge and deep surge. With the circumferentially installed transducers at impeller inlet, backward travelling waves during stall ramp could be observed. The modes of stall waves could be clearly identified which is caused by impeller leading edge flow recirculation at Mu = 0.96. However, for the unstable flow at Mu = 1.08, the system instability seems to be caused by reversal flow in vaneless diffuser where the pressure oscillation was strongest. Thus steady numerical simulation were performed and validated with the experimental performance data. With the help of numerical analysis, the conjectures are proved.


2004 ◽  
Vol 10 (6) ◽  
pp. 433-442 ◽  
Author(s):  
Giovanni Ferrara ◽  
Lorenzo Ferrari ◽  
Leonardo Baldassarre

The rotating stall is a key problem for achieving a good working range of a centrifugal compressor and a detailed understanding of the phenomenon is very important to anticipate and avoid it. Many experimental tests have been planned by the authors to investigate the influence on stall behavior of different geometrical configurations. A stage with a backward channel upstream, a 2-D impeller with a vaneless diffuser and a constant cross-section volute downstream, constitute the basic configuration. Several diffuser types with different widths, pinch shapes, and diffusion ratios were tested. The stage was instrumented with many fast response dynamic pressure sensors so as to characterize inception and evolution of the rotating stall. This kind of analysis was carried out both in time and in frequency domains. The methodology used and the results on phenomenon evolution will be presented and discussed in this article.


2020 ◽  
Vol 14 (4) ◽  
pp. 044116
Author(s):  
F. Akbaridoust ◽  
C. M. de Silva ◽  
C. Szydzik ◽  
A. Mitchell ◽  
I. Marusic ◽  
...  

2016 ◽  
Vol 101 ◽  
pp. 734-741 ◽  
Author(s):  
Michele Marconcini ◽  
Alessandro Bianchini ◽  
Matteo Checcucci ◽  
Davide Biliotti ◽  
Marco Giachi ◽  
...  

2011 ◽  
Vol 29 (2) ◽  
pp. 179-196 ◽  
Author(s):  
G. J. Castilho ◽  
M. A. Cremasco ◽  
L. de Martín ◽  
J. M. Aragón

Author(s):  
Chris Clarke ◽  
Russell Marechale ◽  
Abraham Engeda ◽  
Michael Cave

A steady state simulation procedure is proposed to capture localized flow reversal inside of a centrifugal compressor vaneless diffuser. The procedure was performed on 12 compressor stages of varying geometry for speed lines of 13,100, 19,240, and 21,870 r/min. The simulations were run for all points from choke to surge including the experimentally determined rotating stall onset point. The experimental data and geometry were provided by Solar Turbines Inc. San Diego, CA. It was found possible to capture localized flow reversal inside of a vaneless diffuser using a steady state simulation. The results showed that using a geometric parameter, comparing the diffuser width, b4, to the impeller blade pitch distance, dpitch, it could be determined whether or not a steady state simulation could capture localized flow reversal. For values of b4/dpitch beneath 0.152 flow reversal could not be captured. But, for values of b4/dpitch above 0.177 localized flow reversal was captured. For values between 0.152 and 0.177, no conclusions could be drawn. Where possible, experimental data were compared against the diffuser inlet and outlet numerical profiles and the meridional contour plot. These comparisons served to validate the approach used in this article. These validations showed that the procedure defined herein is accurate and trustworthy within a specific range of geometric and flow characteristics. There are two other conclusions. First, the b4/dpitch parameter helps to define the type of flow breakdown. For b4/dpitch below 0.152, the flow breaks down in the circumferential direction, but for values of b4/dpitch above 0.177, the flow breaks down in the span-wise direction. Second, the simulations were able to capture instances of localized flow reversal before rotating stall onset. This concludes that localized flow reversal is not the determining factor in rotating stall onset as has been suggested by other investigators.


Sign in / Sign up

Export Citation Format

Share Document