scholarly journals Influence of Process Parameters of Unidirectional Glass Fiber Fabric on Resin Infiltration Rate

2021 ◽  
Vol 2011 (1) ◽  
pp. 012047
Author(s):  
Xia Qianjin ◽  
Hao MingYang ◽  
Zhang HongSheng ◽  
Zhong Hai
2019 ◽  
Vol 34 (3) ◽  
pp. 367-375
Author(s):  
L.-X. Wang ◽  
D.-F. Wang ◽  
L. Jiang ◽  
N. Bian ◽  
Q. Li ◽  
...  

Machines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 16
Author(s):  
Gabriel Mansour ◽  
Panagiotis Kyratsis ◽  
Apostolos Korlos ◽  
Dimitrios Tzetzis

There are numerous engineering applications where Glass Fiber Reinforced Polymer (GFRP) composite tubes are utilized, such as desalination plants, power transmission systems, and paper mill, as well as marine, industries. Some type of machining is required for those various applications either for joining or fitting procedures. Machining of GFRP has certain difficulties that may damage the tube itself because of fiber delamination and pull out, as well as matrix deboning. Additionally, short machining tool life may be encountered while the formation of powder like chips maybe relatively hazardous. The present paper investigates the effect of process parameters for surface roughness of glass fiber-reinforced polymer composite pipes manufactured using the filament winding process. Experiments were conducted based on the high-speed turning Computer Numerical Control (CNC) machine using Poly-Crystalline Diamond (PCD) tool. The process parameters considered were cutting speed, feed, and depth of cut. Mathematical models for the surface roughness were developed based on the experimental results, and Analysis of Variance (ANOVA) has been performed with a confidence level of 95% for validation of the models.


2021 ◽  
Vol 54 ◽  
pp. 961-971
Author(s):  
Sergey Shantarenko ◽  
Victor Kuznetsov ◽  
Eugene Ponomarev ◽  
Alexander Vaganov ◽  
Alexey Evseev

2021 ◽  
pp. 089270572110079
Author(s):  
Ali İmran Ayten

The quasi-static punch shear behaviors of thermoplastic composites with different polymer matrices and fiber types were investigated. This study was also focused on how much energy absorption capability can be increased by low fiber fractions. Maleic anhydride grafted polypropylene (MA-g-PP) and acrylonitrile butadiene styrene (MA-g-ABS) were used as the matrix material. One layer of aramid, carbon and glass fiber plain weave fabrics was used as the reinforcement material. Quasi-static punch shear test (QS-PST) was applied to the samples to understand the penetration behavior of the samples. The damaged areas were investigated and related to force-displacement curves. The results showed that the neat form of MA-g-PP exhibited 158% more energy absorption than the neat form of MA-g-ABS. In the samples containing one layer of fabric, the highest improvement was observed in the aramid fabric-reinforced MA-g-ABS matrix composites. Aramid fabric increased the energy absorption at a rate of 142.3% in comparison to the neat MA-g-ABS, while carbon fiber fabric and glass fiber fabric increased it by 40% and 63.52%, respectively. Aramid fiber fabric provided no significant improvement in the energy absorption in the MA-g-PP matrix composites, while carbon and glass fiber fabrics contributed to energy absorption at a rate of 48% and 41%, respectively.


Sign in / Sign up

Export Citation Format

Share Document