scholarly journals Research on H ∞ Preview Control Algorithm for Industrial Wireless Sensor Networks

2021 ◽  
Vol 2025 (1) ◽  
pp. 012055
Author(s):  
Yuanbo Shi ◽  
Yueyang Huang ◽  
Shaojing Hou ◽  
Yinghao Wu
2014 ◽  
Vol 24 (8) ◽  
pp. 2151-2164 ◽  
Author(s):  
Shu-Sheng WEN ◽  
Jiong HUANG ◽  
Ting SHU ◽  
Wei-Qiang XU ◽  
Ya-Ming WANG

2012 ◽  
Vol 490-495 ◽  
pp. 1392-1396 ◽  
Author(s):  
Chu Hang Wang

Topology control is an efficient approach which can reduce energy consumption for wireless sensor networks, and the current algorithms mostly focus on reducing the nodes’ energy consumption by power adjusting, but pay little attention to balance energy consumption of the whole network, which results in premature death of many nodes. Thus, a distributed topology control algorithm based on path-loss and residual energy (PRTC) is designed in this paper. This algorithm not only maintains the least loss links between nodes but also balances the energy consumption of the network. The simulation results show that the topology constructed by PRTC can preserve network connectivity as well as extend the lifetime of the network and provide good performance of energy consumption.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3904
Author(s):  
Jose Vera-Pérez ◽  
Javier Silvestre-Blanes ◽  
Víctor Sempere-Payá

Wireless sensor networks (WSNs) play a key role in the ecosystem of the Industrial Internet of Things (IIoT) and the definition of today’s Industry 4.0. These WSNs have the ability to sensor large amounts of data, thanks to their easy scalability. WSNs allow the deployment of a large number of self-configuring nodes and the ability to automatically reorganize in case of any change in the topology. This huge sensorization capacity, together with its interoperability with IP-based networks, allows the systems of Industry 4.0 to be equipped with a powerful tool with which to digitalize a huge amount of variables in the different industrial processes. The IEEE 802.15.4e standard, together with the access mechanism to the Time Slotted Channel Hopping medium (TSCH) and the dynamic Routing Protocol for Low-Power and Lossy Networks (RPL), allow deployment of networks with the high levels of robustness and reliability necessary in industrial scenarios. However, these configurations have some disadvantages in the deployment and synchronization phases of the networks, since the time it takes to synchronize the nodes is penalized compared to other solutions in which access to the medium is done randomly and without channel hopping. This article proposes an analytical model to characterize the behavior of this type of network, based on TSCH and RPL during the phases of deployment along with synchronization and connection to the RPL network. Through this model, validated by simulation and real tests, it is possible to parameterize different configurations of a WSN network based on TSCH and RPL.


2021 ◽  
pp. 116045
Author(s):  
Carlos Augusto Ribeiro Soares ◽  
Rodrigo de Souza Couto ◽  
Alexandre Sztajnberg ◽  
Jorge Luís Machado do Amaral

Sign in / Sign up

Export Citation Format

Share Document