scholarly journals Periodic Solution of A Delayed Intraguild Predation Impulsive System with Strong Allee Effect

2021 ◽  
Vol 2068 (1) ◽  
pp. 012044
Author(s):  
Jiao Ai ◽  
Kaihua Wang

Abstract With periodic coefficients and strong Allee effects, we establish a delayed intraguild predation impulsive model. We obtain a set of sufficient conditions for the existence of positive periodic solution of the model using Mawhin’s continuation theorem and analysis techniques. Finally, we identify the effectiveness of the theoretical results through some numerical simulations.

Author(s):  
Yongkun Li ◽  
Wenya Xing

Sufficient conditions are obtained for the existence of at least one positive periodic solution of a periodic cooperative model with delays and impulses by using Mawhin's continuation theorem of coincidence degree theory.


2017 ◽  
Vol 33 (1) ◽  
pp. 01-08
Author(s):  
MARAT AKHMET ◽  
◽  
AYSEGUL KIVILCIM

This paper examines impulsive non-autonomous periodic systems whose surfaces of discontinuity and impact functions are not depending on the time variable. The W−map which alters the system with variable moments of impulses to that with fixed moments and facilitates the investigations, is presented. A particular linearizion system with two compartments is utilized to analyze stability of a grazing periodic solution. A significant way to keep down a singularity in linearizion is demonstrated. A concise review on sufficient conditions for the linearizion and stability is presented. An example is given to actualize the theoretical results.


Author(s):  
Jia Liu

In this study, we consider a diffusive predator–prey model with multiple Allee effects induced by fear factors. We investigate the existence, boundedness and permanence of the solution of the system. We also discuss the existence and non-existence of non-constant solutions. We derive sufficient conditions for spatially homogeneous (non-homogenous) Hopf bifurcation and steady state bifurcation. Theoretical and numerical simulations show that strong Allee effect and fear effect have great effect on the dynamics of system.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1280
Author(s):  
Liyun Lai ◽  
Zhenliang Zhu ◽  
Fengde Chen

We proposed and analyzed a predator–prey model with both the additive Allee effect and the fear effect in the prey. Firstly, we studied the existence and local stability of equilibria. Some sufficient conditions on the global stability of the positive equilibrium were established by applying the Dulac theorem. Those results indicate that some bifurcations occur. We then confirmed the occurrence of saddle-node bifurcation, transcritical bifurcation, and Hopf bifurcation. Those theoretical results were demonstrated with numerical simulations. In the bifurcation analysis, we only considered the effect of the strong Allee effect. Finally, we found that the stronger the fear effect, the smaller the density of predator species. However, the fear effect has no influence on the final density of the prey.


2007 ◽  
Vol 17 (01) ◽  
pp. 35-42 ◽  
Author(s):  
YONGHUI XIA ◽  
JINDE CAO ◽  
MUREN LIN

Sufficient conditions are obtained for the existence and global exponential stability of a unique periodic solution of a class of impulsive tow-neuron networks with variable and unbounded delays. The approaches are based on Mawhin's continuation theorem of coincidence degree theory and Lyapunov functions.


2011 ◽  
Vol 130-134 ◽  
pp. 385-390
Author(s):  
Ling Zhen Dong ◽  
Lan Sun Chen

With some theory about continuous and impulsive dynamical system, an impulsive model based on a special predator-prey system is considered. We assume that the impulsive effects occur when the density of the prey reaches a given value. For such a state-dependent impulsive system, the existence, uniqueness and orbital asymptotic stability of an order-1 periodic solution are discussed. Further, the existence of an order-2 periodic solution is also obtained, and persistence of the system is investigated.


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Chenxue Yang ◽  
Mao Ye ◽  
Zijian Liu

We study a single-species periodic logistic type dispersal system in a patchy environment with impulses. On the basis of inequality estimation technique, sufficient conditions of integrable form for the permanence and extinction of the system are obtained. By constructing an appropriate Lyapunov function, conditions for the existence of a unique globally attractively positive periodic solution are also established. Numerical examples are shown to verify the validity of our results and to further discuss the model.


2012 ◽  
Vol 62 (3) ◽  
Author(s):  
G. Samanta

AbstractIn this paper, a two-species nonautonomous Lotka-Volterra model of population growth in a polluted environment is proposed. Global asymptotic behaviour of this model by constructing suitable bounded functions has been investigated. It is proved that each population for competition, predation and cooperation systems respectively is uniformly persistent (permanent) under appropriate conditions. Sufficient conditions are derived to confirm that if each of competition, predation and cooperation systems respectively admits a positive periodic solution, then it is globally asymptotically stable.


2005 ◽  
Vol 2005 (2) ◽  
pp. 153-169 ◽  
Author(s):  
Fengde Chen

With the help of a continuation theorem based on Gaines and Mawhin's coincidence degree, easily verifiable criteria are established for the global existence of positive periodic solutions of a delayed ratio-dependent predator-prey system with stage structure for predator. The approach involves some new technique of priori estimate. For the system without delay, by constructing a suitable Lyapunov function, some sufficient conditions which guarantee the existence of a unique global attractive positive periodic solution are obtained. Those results have further applications in population dynamics.


2010 ◽  
Vol 2010 ◽  
pp. 1-21 ◽  
Author(s):  
Yiping Chen ◽  
Zhijun Liu ◽  
Wenjie Qin

A hybrid impulsive pest control model with stage structure for pest and Holling II functional response is proposed and investigated, in which the effects of impulsive pesticide input in the environment and in the organism are considered. Sufficient conditions for global attractiveness of the pest-extinction periodic solution and permanence of the system are obtained, which show that there exists a globally asymptotically stable pest-extinction periodic solution when the number of natural enemies released is more than some critical value, whereas the system can be permanent when the number of natural enemies released is less than another critical value. Furthermore, numerical simulations are carried out to illustrate our theoretical results and facilitate their interpretation.


Sign in / Sign up

Export Citation Format

Share Document