scholarly journals Preliminary Experimental Assessment of Building Envelope Integrated Ventilative Cooling design

2021 ◽  
Vol 2069 (1) ◽  
pp. 012124
Author(s):  
G Girma ◽  
F Tariku

Abstract To minimize energy consumption, high-performance buildings are being built with highly insulated and airtight building envelopes, high-performance glazing and efficient mechanical systems. But it has been observed that these buildings are prone to an overheating problem during the summertime. Literature suggests a ventilative cooling method, which is the use of natural ventilation for space cooling, as an ideal system for energy saving and overheating prevention. In this study, the behaviour of a building envelope integrated ventilative cooling (EV wall) design is experimentally studied to assess its cooling potential and ventilation capacity. The EV wall design has an opening at the bottom of the wall that allows ventilative air exchange between the indoor and the outdoor through the cavity behind the cladding. The suction pressure created by the buoyancy effect in the wall cavity drives the ventilation air. The experimental assessment has shown that there are two distinct night-time and day-time flows driven by indoor/outdoor temperature difference and solar radiation respectively. This preliminary study indicated the huge potential of ventilative cooling design and ways to further enhance the EV wall performance. For future studies, the EV wall will be considered by implementing an opening control system in a naturally ventilated building.

2018 ◽  
Vol 10 (9) ◽  
pp. 3029 ◽  
Author(s):  
Nikola Pesic ◽  
Jaime Roset Calzada ◽  
Adrian Muros Alcojor

Analyzing the Köppen–Geiger climate classification and available climate data for the southern European Mediterranean coast, eight reference geolocations were selected for this analysis: the cities of Valencia, Barcelona, Marseille, Rome, Koper, Split, Athens and Nicosia. The first part of the research applies the climate potential for natural ventilation (CPNV) methodology that evaluates the theoretical availability of natural ventilation (NV) for each city location corresponding to human hygrothermal conditions. The second part of the article evaluates possible cooling energy savings (ES) applying the advanced natural ventilation (ANV) space-cooling strategy. A hypothetical four-story atrium office building model is designed for the building performance simulation (BPS) using mixed-mode (or hybrid-mode) and night-time natural ventilation (NNV) approaches. The objective is to present a comparison overview of possible space cooling ES between chosen geolocations. In the context of the current European Union’s (EU) energy transition (ET) process, the article displays ANV possibilities, as a renewable energy resource (RES), in the reduction of building space cooling energy demands (ED) on the electricity grid.


2020 ◽  
Vol 15 (3) ◽  
pp. 434-442
Author(s):  
Michele Bottarelli ◽  
Francisco Javier González Gallero ◽  
Ismael Rodríguez Maestre ◽  
Gang Pei ◽  
Yuehong Su

Abstract Several passive cooling design techniques are known for reducing solar heat gain through building envelope in summer season. These include the use of phase change materials (PCM), which has received an increased attention over the last years, and the strategy of increasing the above-sheathing ventilation (ASV) in ventilated roofs. However, few studies combine both technologies to maximise the building resilience in hot season. The effect of including a PCM layer into a ventilated roof is numerically analysed here in two different configurations: firstly, laid on the roof deck (PCM1 case) and, secondly, suspended in the middle of the ASV channel (PCM2 case). A computational fluid dynamics model was implemented to simulate airflow and heat transfer around and through the building envelope, under 3 days of extreme hot conditions in summer with high temperatures and low wind speed. Results showed slight differences in terms of mean temperatures at the different roof layers, although temperature fluctuations at deck in the PCM1 case were smaller than half of those estimated for the benchmark case. However, PCM2 configuration achieved a daily reduction of about 10 Wh/m2 (18%) in building energy load with respect to the benchmark case, whilst PCM1 got only 4% due to the lower ventilation at night time. Therefore, a suspended PCM layer in the ASV channel would be a better measure in terms of energy performance than laid on the deck surface, although this last option significantly decreases thermal stress of the insulation layer.


2017 ◽  
Vol 21 (1) ◽  
pp. 47-67 ◽  
Author(s):  
Maha Sohail

Abstract A large proportion of the world’s population resides in developing countries where there is a lack of rigorous studies in designing energy efficient buildings. This study is a step in designing a naturally ventilated high rise residential building in a tropical climatic context of the developing country, Pakistan. Karachi, the largest city of Pakistan, lies in the subtropical hot desert region with constant high temperature of average 32 °C throughout the summer and no particular winter season. The Design Builder software package is used to design a 25 storey high rise residential building relying primarily on natural ventilation. A final conceptual design is proposed after optimization of massing, geometry, orientation, and improved building envelope design including extensive shading devices in the form of trees. It has been observed that a reduction of 8 °C in indoor ambient temperature is possible to achieve with passive measures and use of night time ventilation. A fully naturally ventilated building can reduce the energy consumption for cooling and heating by 96 % compared to a building using air conditioning systems.


2021 ◽  
Author(s):  
◽  
Tavis Creswell-Wells

<p>“One of the most basic and fundamental questions in urban master planning and building regulations is ‘how to secure common access to sun, light and fresh air?” (Stromann-Andersen & Sattrup, 2011).  Daylighting and natural ventilation can have significant benefits in office buildings. Both of these ‘passive’ strategies have been found to reduce artificial lighting and air-conditioning energy consumption by as much as 80% (Ministry for the Environment, 2008); (Brager, et al., 2007). Access to daylight and fresh air can also be credited with improved occupant comfort and health, which can lead to a reduction of employee absenteeism and an increase of productivity (Sustainability Victoria, 2008).  In the rebuild of Christchurch central city, following the earthquakes of 2010 and 2011, Cantabrians have expressed a desire for a low-rise, sustainable city, with open spaces and high performance buildings (Christchurch City Council, 2011). With over 80% of the central city being demolished, a unique opportunity to readdress urban form and create a city that provides all buildings with access to daylight and fresh air exists.  But a major barrier to wide-spread adoption of passive buildings in New Zealand is their dependence on void space to deliver daylight and fresh air – void space which could otherwise be valuable built floor space. Currently, urban planning regulations in Christchurch prioritize density, allowing and even encouraging low performance compact buildings.  Considering this issue of density, this thesis aimed to determine which urban form and building design changes would have the greatest effect on building performance in Central City Christchurch.  The research proposed and parametrically tested modifications of the current compact urban form model, as well as passive building design elements. Proposed changes were assessed in three areas: energy consumption, indoor comfort and density. Three computer programs were used: EnergyPlus was the primary tool, simulating energy consumption and thermal comfort. Radiance/Daysim was used to provide robust daylighting calculations and analysis. UrbaWind enabled detailed consideration of the urban wind environment for reliable natural ventilation predictions.  Results found that, through a porous urban form and utilization of daylight and fresh air via simple windows, energy consumption could be reduced as much as 50% in buildings. With automatic modulation of windows and lighting, thermal and visual comfort could be maintained naturally for the majority of the occupied year. Separation of buildings by as little as 2m enabled significant energy improvements while having only minimal impact on individual property and city densities.  Findings indicated that with minor alterations to current urban planning laws, all buildings could have common access to daylight and fresh air, enabling them to operate naturally, increasing energy efficiency and resilience.</p>


2021 ◽  
Author(s):  
◽  
Tavis Creswell-Wells

<p>“One of the most basic and fundamental questions in urban master planning and building regulations is ‘how to secure common access to sun, light and fresh air?” (Stromann-Andersen & Sattrup, 2011).  Daylighting and natural ventilation can have significant benefits in office buildings. Both of these ‘passive’ strategies have been found to reduce artificial lighting and air-conditioning energy consumption by as much as 80% (Ministry for the Environment, 2008); (Brager, et al., 2007). Access to daylight and fresh air can also be credited with improved occupant comfort and health, which can lead to a reduction of employee absenteeism and an increase of productivity (Sustainability Victoria, 2008).  In the rebuild of Christchurch central city, following the earthquakes of 2010 and 2011, Cantabrians have expressed a desire for a low-rise, sustainable city, with open spaces and high performance buildings (Christchurch City Council, 2011). With over 80% of the central city being demolished, a unique opportunity to readdress urban form and create a city that provides all buildings with access to daylight and fresh air exists.  But a major barrier to wide-spread adoption of passive buildings in New Zealand is their dependence on void space to deliver daylight and fresh air – void space which could otherwise be valuable built floor space. Currently, urban planning regulations in Christchurch prioritize density, allowing and even encouraging low performance compact buildings.  Considering this issue of density, this thesis aimed to determine which urban form and building design changes would have the greatest effect on building performance in Central City Christchurch.  The research proposed and parametrically tested modifications of the current compact urban form model, as well as passive building design elements. Proposed changes were assessed in three areas: energy consumption, indoor comfort and density. Three computer programs were used: EnergyPlus was the primary tool, simulating energy consumption and thermal comfort. Radiance/Daysim was used to provide robust daylighting calculations and analysis. UrbaWind enabled detailed consideration of the urban wind environment for reliable natural ventilation predictions.  Results found that, through a porous urban form and utilization of daylight and fresh air via simple windows, energy consumption could be reduced as much as 50% in buildings. With automatic modulation of windows and lighting, thermal and visual comfort could be maintained naturally for the majority of the occupied year. Separation of buildings by as little as 2m enabled significant energy improvements while having only minimal impact on individual property and city densities.  Findings indicated that with minor alterations to current urban planning laws, all buildings could have common access to daylight and fresh air, enabling them to operate naturally, increasing energy efficiency and resilience.</p>


Encyclopedia ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 409-422
Author(s):  
Haihua Zhang ◽  
Yao Tao ◽  
Long Shi

A solar chimney is a renewable energy system used to enhance the natural ventilation in a building based on solar and wind energy. It is one of the most representative solar-assisted passive ventilation systems attached to the building envelope. It performs exceptionally in enhancing natural ventilation and improving thermal comfort under certain climate conditions. The ventilation enhancement of solar chimneys has been widely studied numerically and experimentally. The assessment of solar chimney systems based on buoyancy ventilation relies heavily on the natural environment, experimental environment, and performance prediction methods, bringing great difficulties to quantitative analysis and parameterization research. With the increase in volume and complexity of modern building structures, current studies of solar chimneys have not yet obtained a unified design strategy and corresponding guidance. Meanwhile, combining a solar chimney with other passive ventilation systems has attracted much attention. The solar chimney-based integrated passive-assisted ventilation systems prolong the service life of an independent system and strengthen the ventilation ability for indoor cooling and heating. However, the progress is still slow regarding expanded applications and related research of solar chimneys in large volume and multi-layer buildings, and contradictory conclusions appear due to the inherent complexity of the system.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1616
Author(s):  
Nicoletta di Leo ◽  
Stefania Moscato ◽  
Marco Borso' ◽  
Simona Sestito ◽  
Beatrice Polini ◽  
...  

Recent reports highlighted the significant neuroprotective effects of thyronamines (TAMs), a class of endogenous thyroid hormone derivatives. In particular, 3-iodothyronamine (T1AM) has been shown to play a pleiotropic role in neurodegeneration by modulating energy metabolism and neurological functions in mice. However, the pharmacological response to T1AM might be influenced by tissue metabolism, which is known to convert T1AM into its catabolite 3-iodothyroacetic acid (TA1). Currently, several research groups are investigating the pharmacological effects of T1AM systemic administration in the search of novel therapeutic approaches for the treatment of interlinked pathologies, such as metabolic and neurodegenerative diseases (NDDs). A critical aspect in the development of new drugs for NDDs is to know their distribution in the brain, which is fundamentally related to their ability to cross the blood–brain barrier (BBB). To this end, in the present study we used the immortalized mouse brain endothelial cell line bEnd.3 to develop an in vitro model of BBB and evaluate T1AM and TA1 permeability. Both drugs, administered at 1 µM dose, were assayed by high-performance liquid chromatography coupled to mass spectrometry. Our results indicate that T1AM is able to efficiently cross the BBB, whereas TA1 is almost completely devoid of this property.


2021 ◽  
Vol 11 (15) ◽  
pp. 7115
Author(s):  
Chul-Ho Kim ◽  
Min-Kyeong Park ◽  
Won-Hee Kang

The purpose of this study was to provide a guideline for the selection of technologies suitable for ASHRAE international climate zones when designing high-performance buildings. In this study, high-performance technologies were grouped as passive, active, and renewable energy systems. Energy saving technologies comprising 15 cases were categorized into passive, active, and renewable energy systems. EnergyPlus v9.5.0 was used to analyze the contribution of each technology in reducing the primary energy consumption. The energy consumption of each system was analyzed in different climates (Incheon, New Delhi, Minneapolis, Berlin), and the detailed contributions to saving energy were evaluated. Even when the same technology is applied, the energy saving rate differs according to the climatic characteristics. Shading systems are passive systems that are more effective in hot regions. In addition, the variable air volume (VAV) system, combined VAV–energy recovery ventilation (ERV), and combined VAV–underfloor air distribution (UFAD) are active systems that can convert hot and humid outdoor temperatures to create comfortable indoor environments. In cold and cool regions, passive systems that prevent heat loss, such as high-R insulation walls and windows, are effective. Active systems that utilize outdoor air or ventilation include the combined VAV-economizer, the active chilled beam with dedicated outdoor air system (DOAS), and the combined VAV-ERV. For renewable energy systems, the ground source heat pump (GSHP) is more effective. Selecting energy saving technologies that are suitable for the surrounding environment, and selecting design strategies that are appropriate for a given climate, are very important for the design of high-performance buildings globally.


Sign in / Sign up

Export Citation Format

Share Document