scholarly journals Thermo-optical reaction changes of a PCM filled glass system

2021 ◽  
Vol 2069 (1) ◽  
pp. 012195
Author(s):  
T Cabanová ◽  
M Kuruc ◽  
J Čurpek ◽  
D Urbán ◽  
M Čekon

Abstract This paper analyzes thermo-optical reactions of the PCM-based glass element which has the capability to store thermal energy together with a variable transparency level through the energy storage process corresponding to phase change. Optical properties are determined by the level of phase transition at given boundary conditions over time. Special uncommon thermo-optical changes occur during its internal phase transition processes, from liquid to solid phase and vice versa (latent heat of fusion) within a given narrow range of temperature interval. PCM acts as random and diffusive media with relevant scattering effects in solid phase, however in liquid state are highly transparent with direct transmission and no relevant scattering effect. These internal physical changes were detailly identified by experimental test procedures based on optical properties measurements performed using a spectrophotometry, and parallelly with the stabilization of each temperature set provided by environmental chamber. As result of that, relevant differences in the PCM spectral feature can be identified for its different states (solid/liquid) in which transmittance spectra are unstable during rapid phase change process. This provides a substantial base line for the optimization of a PCM glazing system in terms of various degree of freedom for different building types and climate zones.

2018 ◽  
Vol 89 (8) ◽  
pp. 1512-1521
Author(s):  
Na Han ◽  
Wenxin Zhang ◽  
Xiufang Wang ◽  
Xingxiang Zhang ◽  
Wei Li ◽  
...  

It is a worldwide challenge to efficiently use renewable resources to solve the current energy shortage. The existing cellulose-based material is incapable of proper power storage. In this study, a series of cellulose benzoate-g-polyoxyethylene (2) hexadecyl ether (CB-g-E2C16) solid–solid phase change materials were synthesized with cellulose as the skeleton and polyoxyethylene (2) hexadecyl ether (E2C16) as a functional side chain. The skeleton cellulose and benzoyl chloride restrict the free movement of the molecular chains of E2C16 above the phase transition temperature, leading to a solid–solid phase change. Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy were performed to investigate the chemical structures. The thermal energy-storage properties, thermal reliability and thermal stability of the CB-g-E2C16 were investigated by differential scanning calorimetry and thermogravimetry (TG) methods. The analysis results indicated that the E2C16 chains were successfully grafted onto the cellulose benzoate (CB) backbone and the copolymers exhibited typical solid–solid phase transition behavior. The enthalpy and degree of substitution of graft copolymers CB-g-E2C16 could be adjusted by changing the feeding ratio of the raw materials, reaction temperature and post-processing methods of CB. TG analysis results showed that the CB-g-E2C16 copolymers possessed good thermostability and they keep their stability up to 278℃. Compared with pure cellulose, CB-g-E2C16 copolymers could be dissolved in dimethyl sulfoxide and most of them could be dissolved in N, N-dimethylformamide.


2013 ◽  
Vol 785-786 ◽  
pp. 613-617
Author(s):  
Gui Fang Wang ◽  
Dong Ying Li ◽  
Guang Ling Pei

A novel solid-solid phase change materials was synthesized by the two-step condensation reaction of polyethylene glycol (PEG1000), neopentyl glycol (NPG) and 4, 4-diphenylmethane diisocyanate (MDI). Polyethylene glycol (PEG1000) was used as soft segment and 4, 4-diphenylmethane diisocyanate (MDI) as hard segment. The composition, structure and phase change properties were characterized by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetric analyzer (TGA), polarization optical microscopy (POM) respectively. The results indicated that the PCM appeared typical solid-solid phase transition property and the phase change enthalpy and phase transition temperature reached to 120.45 J/g and 37.32°C, respectively.


Crystals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 237 ◽  
Author(s):  
Enrico Bandiello ◽  
Josu Sánchez-Martín ◽  
Daniel Errandonea ◽  
Marco Bettinelli

We report on optical spectroscopic measurements in pure NdVO4 crystals at pressures up to 12 GPa. The influence of pressure on the fundamental absorption band gap and Nd3+ absorption bands has been correlated with structural changes in the crystal. The experiments indicate that a phase transition takes place between 4.7 and 5.4 GPa. We have also determined the pressure dependence of the band-gap and discussed the behavior of the Nd3+ absorption lines under compression. Important changes in the optical properties of NdVO4 occur at the phase transition, which, according to Raman measurements, corresponds to a zircon to monazite phase change. In particular, in these conditions a collapse of the band gap occurs, changing the color of the crystal. The changes are not reversible. The results are analyzed in comparison with those deriving from previous studies on NdVO4 and related vanadates.


2013 ◽  
Vol 3 (8) ◽  
pp. 1101 ◽  
Author(s):  
Tun Cao ◽  
Chenwei Wei ◽  
Robert E. Simpson ◽  
Lei Zhang ◽  
Martin J. Cryan

2018 ◽  
Author(s):  
Ryohei Gotoh ◽  
Tsuyoshi Totani ◽  
Masashi Wakita ◽  
Harunori Nagata

2003 ◽  
Vol 68 (8) ◽  
pp. 1407-1419 ◽  
Author(s):  
Claudio Fontanesi ◽  
Roberto Andreoli ◽  
Luca Benedetti ◽  
Roberto Giovanardi ◽  
Paolo Ferrarini

The kinetics of the liquid-like → solid-like 2D phase transition of adenine adsorbed at the Hg/aqueous solution interface is studied. Attention is focused on the effect of temperature on the rate of phase change; an increase in temperature is found to cause a decrease of transition rate.


2021 ◽  
Vol 6 (24) ◽  
pp. 6280-6285
Author(s):  
Burcu Oktay ◽  
Nilhan Kayaman‐Apohan

2021 ◽  
pp. 2100417
Author(s):  
Xinrui Lyu ◽  
Andreas Heßler ◽  
Xiao Wang ◽  
Yunzhen Cao ◽  
Lixin Song ◽  
...  

2021 ◽  
Vol 129 (7) ◽  
pp. 075103
Author(s):  
Matt Jacobs ◽  
Xinran Zhou ◽  
Edgar Olivera ◽  
Ryan Sheil ◽  
Shu Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document