scholarly journals Conversion of internal combustion engine car to semi-autonomous electric car

2021 ◽  
Vol 2070 (1) ◽  
pp. 012203
Author(s):  
Jeffin Francis ◽  
Aby Biju Narayamparambil ◽  
Anupama Johnson ◽  
Jeswant Mathew ◽  
Vishnu Sankar ◽  
...  

Abstract Climate change, Green House Gases (GHG) and global warming are well-known terms in the world today. Global research efforts are focused towards increasing efficiency and reducing GHG emissions from various emitters to deal with climate change. Since the transportation sector accounts for a large share of global GHG emissions it is justifiable that curbing global warming should transpire in this sector. Worldwide there are large number of research taking place in the electrification of transportation sector and autonomous vehicles. In the footsteps of this global trend towards electrification, autonomous driving and automation of the transportation sector, a research to convert an existing internal combustion engine car to an electric car and implementation of few features found in SAE level 1 autonomous vehicles are explored through this project. These features include controlling vehicles remotely, collision detection, parking assistance, etc.

Author(s):  
R. L. Evans

Global warming has been identified as one of the most important problems facing mankind in the 21st century. Currently, some 6 gigatonnes of CO2 are emitted each year as a result of the combustion of fossil fuels, and a large fraction of these emissions originate from the transportation sector. By examining the complete energy conversion chain, the choice of primary energy source for any particular application becomes easier to understand. A discussion of alternatives to the internal combustion engine as the sole power source for vehicular propulsion is presented, and some form of hybrid electric vehicle propulsion system is identified as being a likely choice to reduce fossil fuel consumption, and therefore CO2 emissions from the transportation sector. The demonstrated market success of grid-independent hybrid vehicles may be followed by a new design of “plug-in hybrid” vehicles in which it is possible to travel for up to 100 km in an all-electric mode, while maintaining the option of using an internal combustion engine when greater range between charging cycles is required.


Author(s):  
Olumide A. Towoju

The future of internal combustion engine-powered automobiles hangs in the balance unless clean fuels are available in commercial quantities. Electricity-powered vehicles will displace the internal combustion engine-powered automobiles. However, electricity-powered vehicles are yet to meet some of the automobile demands. A paradigm shift with attendant infrastructural change is necessary for its adoption. Synthetic fuels promise to be the solution. Their invention dates back to the early twentieth century when the concern was not about climate change. The search for alternative fuels later metamorphosed to when fossil fuels reserve depletion and petroleum derivatives cost became a concern. The alternatives were made available in biofuels. The prevailing challenge is now climate change. It is the consequence of the emission of greenhouse gases from the combustion of petroleum derivatives in automobiles. Synthetic fuels show the potential of coming to the rescue despite the prevailing hurdles. The future holds a potential promise of converting greenhouse gas (CO2) to liquid fuels that will allow little or no disruptions to the current transportation infrastructure network. It is, therefore, necessary to encourage further studies on the production of synthetic fuels. The environmental and economic benefits of commercially available synthetic fuels promise to be enormous.


2012 ◽  
Vol 12 (8) ◽  
pp. 19423-19454
Author(s):  
D. Wang ◽  
W. Jia ◽  
S. C. Olsen ◽  
D. J. Wuebbles ◽  
M. K. Dubey ◽  
...  

Abstract. The prospective future adoption of hydrogen to power the road transportation sector could greatly improve tropospheric air quality but also raises the question whether the adoption would have adverse effects on stratospheric ozone. The possibility of these undesirable impacts must be fully evaluated to guide future policy decisions. Here we evaluate the possible impact of a future (2050) H2-based road transportation sector on stratospheric composition and chemistry, especially on stratospheric ozone, with the MOZART chemical transport model. Since future growth is highly uncertain we evaluate the impact for two world evolution scenarios, one based on a high emitting scenario (IPCC A1FI) and the other on a low emitting scenario (IPCC B1), as well as two technological options: H2 fuel cells and H2 internal combustion engines. We assume a H2 leakage rate of 2.5% and a complete market penetration of H2 vehicles in 2050. The model simulations show that a H2-based road transportation sector would reduce stratospheric ozone concentrations as a result of perturbed catalytic ozone destruction cycles. The magnitude of the impact depends on which growth scenario the world evolves and which H2 technology option is applied. For the same world evolution scenario, stratospheric ozone decreases more in the H2 fuel cell scenarios than in the H2 internal combustion engine scenarios because of the NOx emissions in the latter case. If the same technological option is applied, the impact is larger in the A1FI emission scenario. The largest impact, a 0.54% decrease in annual average global mean stratospheric column ozone, is found with a H2 fuel cell type road transportation sector in the A1FI scenario; whereas the smallest impact, a 0.04% increase in stratospheric ozone, is found with applications of H2 internal combustion engine vehicles in the B1 scenario. The impacts of the other two scenarios fall between the above two bounding scenarios. However, the magnitude of these changes is much smaller than the increases in 2050 stratospheric ozone expected as stratospheric ozone recovers due to the limits in ozone depleting substance emissions imposed in the Montreal Protocol.


2012 ◽  
Vol 165 ◽  
pp. 1-5 ◽  
Author(s):  
Halim Razali ◽  
Kamaruzzaman Sopian ◽  
Baharuddin Ali ◽  
Ali Sohif Mat

The instability of petroleum prices in the world market has caused the price of fuel in Malaysia to increase, especially in the transportation sector. As an alternative, the transition to use hydrogen as fuel was already in the study and research on the ability of hydrogen profit for internal combustion engine in the technical aspect. The governments involvement in the research as source of energy has been undertaken by several government agencies such as MOSTI, universities and automotive manufacturing industries. These agencies are responsible for developing activities, mainly for commercialization. The development of hydrogen energy in this country focuses on the role of hydrogen that includes methods of generating, transporting, storage, production, and long-term planning. Diversity in the use of hydrogen for Internal Combustion Engine (ICE) can be applied through many ways; hydrogen as the primary fuel, hydrogen mixed with gasoline, hydrogen mixed with diesel, and hydrogen mixed with NGV. Compatibility acceptance of ICE with hydrogen as an alternative energy can solve many technical problems such as backfire, knocking, and the reduction of hydrocarbon, carbon monoxide and smoke contaminants during engine ignition delay.


2013 ◽  
Vol 13 (13) ◽  
pp. 6139-6150 ◽  
Author(s):  
D. Wang ◽  
W. Jia ◽  
S. C. Olsen ◽  
D. J. Wuebbles ◽  
M. K. Dubey ◽  
...  

Abstract. The prospective future adoption of molecular hydrogen (H2) to power the road transportation sector could greatly improve tropospheric air quality but also raises the question of whether the adoption would have adverse effects on the stratospheric ozone. The possibility of undesirable impacts must be fully evaluated to guide future policy decisions. Here we evaluate the possible impact of a future (2050) H2-based road transportation sector on stratospheric composition and chemistry, especially on the stratospheric ozone, with the MOZART (Model for OZone And Related chemical Tracers) model. Since future growth is highly uncertain, we evaluate the impact of two world evolution scenarios, one based on an IPCC (Intergovernmental Panel on Climate Change) high-emitting scenario (A1FI) and the other on an IPCC low-emitting scenario (B1), as well as two technological options: H2 fuel cells and H2 internal combustion engines. We assume a H2 leakage rate of 2.5% and a complete market penetration of H2 vehicles in 2050. The model simulations show that a H2-based road transportation sector would reduce stratospheric ozone concentrations as a result of perturbed catalytic ozone destruction cycles. The magnitude of the impact depends on which growth scenario evolves and which H2 technology option is applied. For the evolution growth scenario, stratospheric ozone decreases more in the H2 fuel cell scenarios than in the H2 internal combustion engine scenarios because of the NOx emissions in the latter case. If the same technological option is applied, the impact is larger in the A1FI emission scenario. The largest impact, a 0.54% decrease in annual average global mean stratospheric column ozone, is found with a H2 fuel cell type road transportation sector in the A1FI scenario; whereas the smallest impact, a 0.04% increase in stratospheric ozone, is found with applications of H2 internal combustion engine vehicles in the B1 scenario. The impacts of the other two scenarios fall between the above two boundary scenarios. However, the magnitude of these changes is much smaller than the increases in 2050 stratospheric ozone projected, as stratospheric ozone is expected to recover due to the limits in ozone depleting substance emissions imposed in the Montreal Protocol.


2020 ◽  
Vol 12 (6) ◽  
pp. 2387 ◽  
Author(s):  
Bamidele Victor Ayodele ◽  
Siti Indati Mustapa

The transportation sector has been reported as a key contributor to the emissions of greenhouse gases responsible for global warming. Hence, the need for the introduction of electric vehicles (EVs) into the transportation sector. However, the competitiveness of the EVs with the conventional internal combustion engine vehicles has been a bone of contention. Life cycle cost analysis (LCCA) is an important tool that can be employed to determine the competitiveness of a product in its early stage of production. This review examines different published articles on LCCA of EVs using Scopus and Web of Science databases. The time trend of the published articles from 2001 to 2019 was examined. Moreover, the LCC obtained from the different models of EVs were compared. There was a growing interest in research on the LCC of EVs as indicated by the upward increase in the number of published articles. A variation in the LCC of the different EVs studied was observed to depend on several factors. Based on the LCC, EVs were found not yet competitive with conventional internal combustion engine cars due to the high cost of batteries. However, advancement in technologies with incentives could bring down the cost of EV batteries to make it competitive in the future.


2020 ◽  
Vol 183 (4) ◽  
pp. 39-44
Author(s):  
Serguei Tikhonenkov

The article examines the level of perfection of the modern internal combustion engine design, their impact on the environment and population. A new engine concept has been developed. As a result, a decrease in fuel consumption by 80% has been discovered as well approaches to solve this task. A comparison of the proposed and traditional engine is presented. The effects of the new engine in the field of ecology such as a decrease in the number of diseases caused by poor environmental conditions, a lower risk of global warming, lower health care costs, an increase in life expectancy, the cheap electricity for industries and householders etc.


Sign in / Sign up

Export Citation Format

Share Document