scholarly journals On the force caused by a null Einstein-Maxwell field with the plane symmetry

2021 ◽  
Vol 2081 (1) ◽  
pp. 012033
Author(s):  
V N Timofeev

Abstract The article shows that a large flat platform with a constant current, which flows over its surface, accelerates time. It is also shown that if an alternating current flows along the surface of a flat platform while creating a null electromagnetic field then a force repelling from the platform acts on the test particle located near it. This force has no gravitational nature and arises as a result of the curvature of space-time by the electromagnetic field of a flat platform with an alternating current.

2004 ◽  
Vol 19 (29) ◽  
pp. 5043-5050 ◽  
Author(s):  
YONGGE MA ◽  
JUN WU

A free test particle in five-dimensional Kaluza–Klein space–time will show its electricity in the reduced four-dimensional space–time when it moves along the fifth dimension. In the light of this observation, we study the coupling of a five-dimensional dust field with the Kaluza–Klein gravity. It turns out that the dust field can curve the five-dimensional space–time in such a way that it provides exactly the source of the electromagnetic field in the four-dimensional space–time after the dimensional reduction.


By splitting the curvature tensor R hijk into three 3-tensors of the second rank in a normal co-ordinate system, self-conjugate empty gravitational fields are defined in a manner analogous to that of the electromagnetic field. This formalism leads to three different types of self-conjugate gravitational fields, herein termed as types A, B and C . The condition that the gravitational field be self-conjugate of type A is expressed in a tensor form. It is shown that in such a field R hijk is propagated with the fundamental velocity and all the fourteen scalar invariants of the second order vanish. The structure of R hijk defines a null vector which can be identified as the vector defining the propagation of gravitational waves. It is found that a necessary condition for an empty gravitational field to be continued with a flat space-time across a null 3-space is that the field be self-conjugate of type A. The concept of the self-conjugate gravitational field is extended to the case when R ij # 0 but the scalar curvature R is zero. The condition in this case is also expressed in a tensor form. The necessary conditions that the space-time of an electromagnetic field be continued with an empty gravitational field or a flat space-time across a 3-space have been obtained. It is shown that for a null electromagnetic field whose gravitational field is self-conjugate of type A , all the fourteen scalar invariants of the second order vanish.


2021 ◽  
Vol 130 (3) ◽  
pp. 034301
Author(s):  
Miguel Urbaneja Torres ◽  
Kristjan Ottar Klausen ◽  
Anna Sitek ◽  
Sigurdur I. Erlingsson ◽  
Vidar Gudmundsson ◽  
...  

2013 ◽  
Vol 22 (04) ◽  
pp. 1350017 ◽  
Author(s):  
GINÉS R. PÉREZ TERUEL

We derive a new set of field equations within the framework of the Palatini formalism. These equations are a natural generalization of the Einstein–Maxwell equations which arise by adding a function [Formula: see text], with [Formula: see text] to the Palatini Lagrangian f(R, Q). The result we obtain can be viewed as the coupling of gravity with a nonlinear extension of the electromagnetic field. In addition, a new method is introduced to solve the algebraic equation associated to the Ricci tensor.


1947 ◽  
Vol 72 (1) ◽  
pp. 68-71 ◽  
Author(s):  
Hartland S. Snyder

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Mona Moradi ◽  
Reza Faghih Mirzaee ◽  
Keivan Navi

Novel designs of current-mode Ternary minimum (AND) and maximum (OR) are proposed in this paper based on Carbon NanoTube Field Effect Transistors (CNTFET). First, these Ternary operators are designed separately. Then, they are combined together in order to generate both outputs concurrently in an integrated design. This integration results in the elimination of common parts when both functions are required at the same time. The third proposed current-mode integrated circuit generates both ternary operators with the usage of only 30 transistors. The new designs are composed of three main parts: (1) the part which converts current to voltage; (2) threshold detectors; and (3) the parallel paths through which the output current flows. Unlike the previously presented structure, there is no need for any constant current source within the new designs. This elimination leads to less static power dissipation. The second proposed current-mode segregated Ternary minimum operates 43% faster and consumes 40% less power in comparison with a previously presented structure.


1972 ◽  
Vol 44 ◽  
pp. 313-313
Author(s):  
J. L. Sěrsic

The explosive events going on in the central parts of some galaxies are related to a very high mass concentration. As an explosion is actually a drastic rearrangement of the concerned masses with energy release, the binding energy of the central core will change and, correspondingly, its effective gravitational mass. A test particle far from the nuclear region, although within the galaxy, will be moving accordingly in a variable-mass Newtonian gravitational field.On the other hand the observations suggest that explosions in galaxies have axial symmetry, so we are concerned with the global properties of the motion of a particle in a variable mass axisymmetric gravitational field. In order to get rid of the mass variation a space-time conformal transformation is made, which, after imposing some not very restrictive conditions, leads to a conservative potential in the new variables. This new potential has additional terms due to the elimination of the variable mass. The equations of motion in the new variables provide the motion of the test particle relative to an expanding or contracting background which depends on the choice of the transformation and the law of the mass variability. The problem is, at this point, formally similar to Hill's. It is possible to write an equation for the relative energy (a generalization of Jacobi's integral) and also to define surfaces of zero relative velocity for the infinitesimal particle. The general topological properties of these surfaces require singular points along the symmetry axis (analogous to the collinear Eulerian points) and also a dense set in a circumference on a plane perpendicular to the symmetry axis (analogous to the Lagrangian points). The latter one is the main feature characterizing the topology of the zero relative velocity surfaces. Even when we lift some of the restrictive conditions, the Lagrangian ring preserves its properties, as for example, the one of being the only region where zero-velocity curves and equi-potentials coincide when the configuration evolves in time (in the transformed space-time).It is easy to understand that the topology of the surfaces is kept when we reverse the transformation and go back to physical space-time. If the dust, gas or stars in the system has definite upper limits for its Jacobian constants, spatial segregation of them will arise, as is the case in radio-galaxies such as NGC 5128, NGC 1316, etc. where ringlike dust structures are observed.


Sign in / Sign up

Export Citation Format

Share Document