scholarly journals Intelligent multi-agent architecture for a supervisor of a water treatment plant

2021 ◽  
Vol 2090 (1) ◽  
pp. 012124
Author(s):  
E. Mendoza ◽  
J. Andramuño ◽  
J. Núñez ◽  
L. Córdova

Abstract The rapid development of Information and Communication Technologies (ICT) and high-capacity hardware components make it necessary to achieve a strong integration of automatic systems based on new paradigms on intelligent distributed architectures, where require highly complex supervision and control tasks, due to the generated requirements of the new production systems, the high number of variables to control and the advancement of technologies, especially in industries where continuous processes have been established. In the present work, a distributed hierarchical modular architecture is proposed for a supervision system, based on multi-agent systems (MAS), oriented to the management of processes in the filtration stage of a water purification plant, using a methodology to the implementation of intelligent agents that allow to project, design, verify and validate the system. This methodology is fundamentally based on the use of the Unified Modeling Language (UML) for its projection and Petri nets (PN) for the simulation and validation of properties, which allows to guarantee the modularity, flexibility, and robustness of the proposed system. The architectures of the intelligent agents in the different programmable devices are modeled and simulated to achieve an adequate interaction and collaboration, allowing to reduce the conflicts that may be generated between them. The evaluation of the distributed architecture focuses on the fulfillment of the functional requirements and evaluation metrics, which, through the analysis of the properties of the Petri net, allows to determine the correct operation of the system and its dynamic behavior in the face of unforeseen situations at different levels of automation.

2021 ◽  
Vol 2094 (3) ◽  
pp. 032033
Author(s):  
I A Kirikov ◽  
S V Listopad ◽  
A S Luchko

Abstract The paper proposes the model for negotiating intelligent agents’ ontologies in cohesive hybrid intelligent multi-agent systems. Intelligent agent in this study will be called relatively autonomous software entity with developed domain models and goal-setting mechanisms. When such agents have to work together within single hybrid intelligent multi-agent systems to solve some problem, the working process “go wild”, if there are significant differences between the agents’ “points of view” on the domain, goals and rules of joint work. In this regard, in order to reduce labor costs for integrating intelligent agents into a single system, the concept of cohesive hybrid intelligent multi-agent systems was proposed that implement mechanisms for negotiating goals, domain models and building a protocol for solving the problems posed. The presence of these mechanisms is especially important when building intelligent systems from intelligent agents created by various independent development teams.


Author(s):  
Stefan Kirn ◽  
Mathias Petsch ◽  
Brian Lees

For a new technology, such as that offered by intelligent agents, to be successful and widely accepted, it is necessary for systems, based on that technology, to be capable of maintaining security and consistency of operation when integrated into the existing infrastructure of an organisation. This paper explores some of the security issues relating to application of intelligent agents and the integration of such systems into existing organisations. First, existing information security issues for enterprises are considered. Then, a short introduction to the new technology of agents and agent systems is given. Following this, the special security problems of the new technology of software agents and the emerging risks for software and enterprises are discussed. Finally, a new security architecture for multi-agent systems is proposed, together with an explanation of how this multilevel architecture can help to improve the security of agent systems.


Author(s):  
Qi Hao ◽  
Weiming Shen ◽  
Zhan Zhang ◽  
Seong-Whan Park ◽  
Jai-Kyung Lee

Agent technology is playing an increasingly important role in developing intelligent, distributed and collaborative applications. The innate difficulties of interoperation between heterogeneous agent communities and rapid construction of multi-agent systems have motivated the emergence of FIPA specifications and the proliferation of multi-agent system platforms or toolkits that implement FIPA specifications. In this paper, a FIPA compliant multi-agent framework called AADE (Autonomous Agent Development Environment) is presented. This framework, originating from the engineering fields, can facilitate the rapid development of collaborative engineering applications (especially in engineering design and manufacturing fields) through the provision of reusable packages of agent-level components and programming tools. An agent oriented engineering project on the development of an e-engineering design and optimization environment is designed and developed based on the facilities provided by the AADE framework.


AI Magazine ◽  
2018 ◽  
Vol 39 (4) ◽  
pp. 29-35
Author(s):  
Christopher Amato ◽  
Haitham Bou Ammar ◽  
Elizabeth Churchill ◽  
Erez Karpas ◽  
Takashi Kido ◽  
...  

The Association for the Advancement of Artificial Intelligence, in cooperation with Stanford University’s Department of Computer Science, presented the 2018 Spring Symposium Series, held Monday through Wednesday, March 26–28, 2018, on the campus of Stanford University. The seven symposia held were AI and Society: Ethics, Safety and Trustworthiness in Intelligent Agents; Artificial Intelligence for the Internet of Everything; Beyond Machine Intelligence: Understanding Cognitive Bias and Humanity for Well-Being AI; Data Efficient Reinforcement Learning; The Design of the User Experience for Artificial Intelligence (the UX of AI); Integrated Representation, Reasoning, and Learning in Robotics; Learning, Inference, and Control of Multi-Agent Systems. This report, compiled from organizers of the symposia, summarizes the research of five of the symposia that took place.


2019 ◽  
Vol 11 (4) ◽  
pp. 1580-1602 ◽  
Author(s):  
Jose Simmonds ◽  
Juan A. Gómez ◽  
Agapito Ledezma

Abstract Flood problems are complex phenomena with a direct relationship with the hydrological cycle; these are natural processes occurring in water systems, that interact at different spatial and temporal scales. In modeling the hydrological phenomena, traditional approaches, like physics-based mathematical equations and data-driven modeling (DDM) are used. Advances in hydroinformatics are helping to understand these physical processes, with improvements in the collection and analysis of hydrological data, information and communication technologies (ICT), and geographic information systems (GIS), offering opportunities for innovations in model implementation, to improve decision support for the response to societally important floods impacting our societies. This paper offers a brief review of agent-based models (ABMs) and multi-agent systems (MASs) methodologies' applications for solutions to flood problems, their management, assessment, and efforts for forecasting stream flow and flood events. Significant observations from this review include: (i) contributions of agent technologies, as a growing methodology in hydrology; (ii) limitations; (iii) capabilities of dealing with distributed and complex domains; and (iv), the capabilities of MAS as an increasingly accepted point of view applied to flood modeling, with examples presented to show the variety of system combinations that are practical on a specialized architectural level for developing and deploying sophisticated flood forecasting systems.


2011 ◽  
Vol 9 (4) ◽  
pp. 221-222 ◽  
Author(s):  
Mehmet A. Orgun ◽  
Guido Governatori ◽  
Chuchang Liu ◽  
Mark Reynolds ◽  
Abdul Sattar

Author(s):  
Yu. V. Dubenko

This paper is devoted to the problem of collective artificial intelligence in solving problems by intelligent agents in external environments. The environments may be: fully or partially observable, deterministic or stochastic, static or dynamic, discrete or continuous. The paper identifies problems of collective interaction of intelligent agents when they solve a class of tasks, which need to coordinate actions of agent group, e. g. task of exploring the territory of a complex infrastructure facility. It is revealed that the problem of reinforcement training in multi-agent systems is poorly presented in the press, especially in Russian-language publications. The article analyzes reinforcement learning, describes hierarchical reinforcement learning, presents basic methods to implement reinforcement learning. The concept of macro-action by agents integrated in groups is introduced. The main problems of intelligent agents collective interaction for problem solving (i. e. calculation of individual rewards for each agent; agent coordination issues; application of macro actions by agents integrated into groups; exchange of experience generated by various agents as part of solving a collective problem) are identified. The model of multi-agent reinforcement learning is described in details. The article describes problems of this approach building on existing solutions. Basic problems of multi-agent reinforcement learning are formulated in conclusion.


Author(s):  
Jackson Tavares Veiga ◽  
Marcosiris Amorim de Oliveira Pessoa ◽  
Fabrício Junqueira ◽  
Paulo Eigi Miyagi ◽  
Diolino José Dos Santos Filho

Manufacturing systems need to meet I4.0 guidelines to deal with uncertainty in scenarios of turbulent demand for products. The engineering concepts to define the service’s resources to manufacture the products will be more flexible, ensuring the possibility of re-planning in operation. These can follow the engineering paradigm based on capabilities. The virtualization of industry components and assets achieves the RAMI 4.0 guidelines and (I4.0C), which describes the Asset Administration Shell (AAS). However, AAS are passive components that provide information about I4.0 assets. The proposal of specific paradigms is exposed for managing these components, as is the case of multi-agent systems (MAS) that attribute intelligence to objects. The implementation of resource coalitions with evolutionary architectures (EAS) applies cooperation and capabilities’ association. Therefore, this work focuses on designing a method for modeling the asset administration shell (AAS) as virtual elements orchestrating intelligent agents (MAS) that attribute cooperation and negotiation through contracts to coalitions based on the engineering capabilities concept. The systematic method suggested in this work is partitioned for the composition of objects, AAS elements, and activities that guarantee the relationship between entities. Finally, Production Flow Schema (PFS) refinements are applied to generate the final Petri net models (PN) and validate them with Snoopy simulations. The results achieved demonstrate the validation of the procedure, eliminating interlocking and enabling liveliness to integrate elements behavior.


Computers ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 161
Author(s):  
Jackson T. Veiga ◽  
Marcosiris A. O. Pessoa ◽  
Fabrício Junqueira ◽  
Paulo E. Miyagi ◽  
Diolino J. dos Santos Filho

Manufacturing systems need to meet Industry 4.0 (I4.0) guidelines to deal with uncertainty in scenarios of turbulent demand for products. The engineering concepts to define the service’s resources to manufacture the products will be more flexible, ensuring the possibility of re-planning in operation. These can follow the engineering paradigm based on capabilities. The virtualization of industry components and assets achieves the RAMI 4.0 guidelines and (I4.0C), which describes the Asset Administration Shell (AAS). However, AAS are passive components that provide information about I4.0 assets. The proposal of specific paradigms is exposed for managing these components, as is the case of multi-agent systems (MAS) that attribute intelligence to objects. The implementation of resource coalitions with evolutionary architectures (EAS) applies cooperation and capabilities’ association. Therefore, this work focuses on designing a method for modeling the asset administration shell (AAS) as virtual elements orchestrating intelligent agents (MAS) that attribute cooperation and negotiation through contracts to coalitions based on the engineering capabilities concept. The systematic method suggested in this work is partitioned for the composition of objects, AAS elements, and activities that guarantee the relationship between entities. Finally, Production Flow Schema (PFS) refinements are applied to generate the final Petri net models (PN) and validate them with Snoopy simulations. The results achieved demonstrate the validation of the procedure, eliminating interlocking and enabling liveliness to integrate elements’ behavior.


Sign in / Sign up

Export Citation Format

Share Document