scholarly journals Relative positioning of UWB tags with deferred ranging

2021 ◽  
Vol 2094 (4) ◽  
pp. 042034
Author(s):  
T V Krasnov ◽  
R I Tokarev ◽  
A A Zubicks

Abstract The aim of the work is to develop relative navigation systems based on ultrawideband signals. In a relative navigation system, measurements are transmitted not to the base station, but to mobile subscribers who solve the navigation problem. The work of the network with the SDS-TWR distance measurement protocol is shown and a method for reducing the load in the network of devices is proposed, in which delayed distance measurements are used.

2010 ◽  
Vol 6 (3) ◽  
pp. 60
Author(s):  
Richard Schilling ◽  

Atrial fibrillation (AF) is linked to an increased risk of adverse cardiovascular events. While rhythm control with antiarrhythmic drugs (AADs) is a common strategy for managing patients with AF, catheter ablation may be a more efficacious and safer alternative to AADs for sinus rhythm control. Conventional catheter ablation has been associated with challenges during the arrhythmia mapping and ablation stages; however, the introduction of two remote catheter navigation systems (a robotic and a magnetic navigation system) may potentially overcome these challenges. Initial clinical experience with the robotic navigation system suggests that it offers similar procedural times, efficacy and safety to conventional manual ablation. Furthermore, it has been associated with reduced fluoroscopy exposure to the patient and the operator as well as a shorter fluoroscopy time compared with conventional catheter ablation. In the future, the remote navigation systems may become routinely used for complex catheter ablation procedures.


2020 ◽  
Vol 25 (5) ◽  
pp. 465-474
Author(s):  
V.O. Zhilinskiy ◽  
◽  
D.S. Pecheritsa ◽  
L.G. Gagarina ◽  
◽  
...  

The Global Navigation Satellite System has a huge impact on both the public and private sectors, including the social-economic development, it has many applications and is an integral part of many domains. The application of the satellite navigation systems remains the most relevant in the field of transport, including land, air and maritime transport. The GLONASS system consists of three segments and the operation of the entire system depends on functioning of each component, but primarily, the accuracy of measurements depends on the basis forming of the control segment and management, responsible for forming ephemeris-time information. In the work, the influence of ephemeris-time information on the accuracy of solving the navigation problem by the signals of the GLONASS satellite navigation system has been analyzed. The influence of both ephemeris information and the frequency information, and of the time corrections has been individually studied. The accuracy of the ephemeris-time information is especially important when solving the navigation problem by highly precise positioning method. For the analysis the following scenarios of the navigation problem solving have been formed: using high-precision and broadcast ephemeris-time information, a combination of broadcast (high-precision) ephemeris-time information, and high-precision (broadcast) satellite clock offsets and two scenarios with simulation of the calculation of the relative correction to the radio signal carrier frequency. Based on the study results it has been concluded that the contribution of the frequency-time corrections to the error of location determination is of the greatest importance and a huge impact on the error location, while the errors of the ephemeris information are insignificant


2020 ◽  
Vol 2 (Supplement_3) ◽  
pp. ii2-ii3
Author(s):  
Kazuhiko Kurozumi

Abstract Navigation systems are reliable and safe for neurological surgery. Navigation is an attractive and innovative therapeutic option. Recently, endo and exoscopic surgeries have been gradually increasing in neurosurgery. We are currently trialing to use 4K and 8K systems to improve the accuracy and safety of our surgical procedures. Surgeries for deep-seated tumors are challenging because of the difficulty in creating a corridor and observing the interface between lesions and the normal area. In total, 315 patients underwent surgery at Okayama University between 2017 and 2019. Among them, we experienced 92 glioma surgeries using navigation systems. Preoperatively, we performed computed tomography imaging and contrast-enhanced magnetic resonance imaging (MRI) for the neuronavigation system. We experienced Curve(TM) Image Guided Surgery (BrainLab, Munich, Germany). The surgical trajectory was planned with functional MRI and diffusion tensor imaging to protect the eloquent area and critical vasculature of the brain. We used a clear plastic tubular retractor system, the ViewSite Brain Access System, for surgery of deep seated gliomas. We gently inserted and placed the ViewSite using the neuronavigation. The tumor was observed and resected through the ViewSite tubular retractor under a microscope and endoscope. If the tumor was large, we switched the ViewSite tubular retractor to brain spatulas to identify the boundary between the normal brain and lesion. We are currently using the combination of the tubular retractor and brain spatulas using navigation system. Here, we present and analyze our preoperative simulation, surgical procedure, and outcomes.


2012 ◽  
Vol 245 ◽  
pp. 323-329 ◽  
Author(s):  
Muhammad Ushaq ◽  
Jian Cheng Fang

Inertial navigation systems exhibit position errors that tend to grow with time in an unbounded mode. This degradation is due, in part, to errors in the initialization of the inertial measurement unit and inertial sensor imperfections such as accelerometer biases and gyroscope drifts. Mitigation to this growth and bounding the errors is to update the inertial navigation system periodically with external position (and/or velocity, attitude) fixes. The synergistic effect is obtained through external measurements updating the inertial navigation system using Kalman filter algorithm. It is a natural requirement that the inertial data and data from the external aids be combined in an optimal and efficient manner. In this paper an efficient method for integration of Strapdown Inertia Navigation System (SINS), Global Positioning System (GPS) and Doppler radar is presented using a centralized linear Kalman filter by treating vector measurements with uncorrelated errors as scalars. Two main advantages have been obtained with this improved scheme. First is the reduced computation time as the number of arithmetic computation required for processing a vector as successive scalar measurements is significantly less than the corresponding number of operations for vector measurement processing. Second advantage is the improved numerical accuracy as avoiding matrix inversion in the implementation of covariance equations improves the robustness of the covariance computations against round off errors.


Author(s):  
Calina Seybold ◽  
George Chen ◽  
Paolo Bellutta ◽  
Andrew Johnson ◽  
Larry Matthies ◽  
...  

Author(s):  
Jun Xiong ◽  
Joon Wayn Cheong ◽  
Zhi Xiong ◽  
Andrew G. Dempster ◽  
Shiwei Tian ◽  
...  

1960 ◽  
Vol 13 (3) ◽  
pp. 301-315
Author(s):  
Richard B. Seeley ◽  
Roy Dale Cole

This paper describes and discusses some of the techniques by which a moving inertial platform may be aligned by using external velocity measurements and also presents some of the major problems and error sources affecting such alignment. It is based upon the results of a 3-year study, of inertial and doppler-inertial navigation at the Naval Ordnance Test Station, China Lake, California, and, in general, applies to inertial navigation systems which erect to either the local level or the mass-attraction vertical. Although rudimentary derivations are made of the alignment techniques, the paper is largely nonmathematical for ease of reading. Emphasis is placed upon the major errors affecting the alignment. This paper describes and discusses some of the techniques by which a moving inertial platform may be aligned by using external velocity measurements and also presents some of the major problems and error sources affecting such alignment. It is based upon the results of a 3-year study, of inertial and doppler-inertial navigation at the Naval Ordnance Test Station, China Lake, California, and, in general, applies to inertial navigation systems which erect to either the local level or the mass-attraction vertical. Although rudimentary derivations are made of the alignment techniques, the paper is largely nonmathematical for ease of reading. Emphasis is placed upon the major errors affecting the alignment.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6421
Author(s):  
Joanna Gmitrowicz-Iwan ◽  
Magdalena Myszura ◽  
Tomasz Olenderek ◽  
Sławomir Ligęza ◽  
Heronim Olenderek

Recent years have brought dynamic developments in surveying equipment and techniques. These include reflectorless electromagnetic distance measurement (RL EDM), which is used in a range of devices, especially total stations. Studies concerning the influence of the reflecting surface on the accuracy of RL EDM tend to focus on the colour of the measurement surface, while the influence of the density and thickness of materials is usually neglected. Therefore, this study undertook to examine 53 samples representing various materials of dissimilar features: colour, type of surface and density. The results show that dark and mat surfaces cause higher RL EDM errors than bright, gloss materials. Nonetheless, 76% of the results were in compliance with equipment specifications. Moreover, it was found that the density of the samples had significant impact on the overall accuracy. RL EDM to EPS (expanded polystyrene sheets, low-density material, commonly called Styrofoam) involved a significantly higher error rate. It demonstrates that total station measurements and laser scanning should be performed cautiously, especially with regard to materials of low density (e.g., EPS) and on short distances, where the value of relative error is high.


2019 ◽  
Vol 11 (4) ◽  
pp. 139-154
Author(s):  
M. RAJA ◽  
Gaurav ASTHANA ◽  
Ajay SINGH ◽  
Ashna SINGHAL ◽  
Pallavi LAKRA

Navigation has a huge application in aviation and aircraft automatic approach. Two widely used navigation systems are Global position System (GPS) and Inertial Navigation System (INS). Triangulation method used to determine the aircrafts location by GPS, speed whereas an INS, with the aid of gyroscope and accelerometer, estimates the location, velocity and alignment of an aircraft. Aircraft navigation is a complex task and using only one of the above navigation systems results in inaccurate and insufficient data. GPS stops working when satellite signal is not received, susceptible to interfere occasionally has high noise content, and has a low bandwidth, INS system requires external information for initialization has long-term drift errors. Certain errors like ionosphere interference, clock error, orbital error, position error, etc. might arise and disrupt the navigation process. In order to outrun the limitations of the above two systems and counter the errors, both INS and GPS can be integrated and used to attain more smooth, accurate and faster aircraft attitude estimates, as they have complementary strengths and limitations. GPS is stable for a long period and can act as an independent navigation system whereas INS is not susceptible to interference and signal losses has high radio bandwidth and works well for short intervals of time. In order to get accurate and precise attitude estimation, calculation of the parameters at different altitude using both systems is done; furthermore the comparison and contrast between the results is performed, measured quantities are transformed between various frames like longitudinal to rolling, calculation and elimination of errors is done producing the final solution. Because of integrated GPS and INS, the navigation system exhibits robustness, higher bandwidth, better noise characteristics, and long-term stability.


Sign in / Sign up

Export Citation Format

Share Document