scholarly journals Research and Optimization Design of Mixing Characteristics of High-speed Centrifugal Mixer Based on DEM

2021 ◽  
Vol 2095 (1) ◽  
pp. 012071
Author(s):  
Hongjun Li ◽  
Xiao Zhou ◽  
Xu Li ◽  
Wei Chen ◽  
Ying Zuo

Abstract Aiming at the special production process of an environmental protection building material, a new mixing equipment, high-speed centrifugal mixer, was designed. In this paper, the mixing characteristics of high-speed centrifugal mixer were studied by using discrete element method (DEM). By constructing the contact model and establishing the evaluation system, the mixing process was simulated and analyzed by EDEM software, and the mixing situation of the two raw materials in the centrifugal mixer was obtained. At the same time, according to the two important factors affecting the mixing results, the comparative experimental analysis was carried out under different conditions, and finally the optimization suggestions for the equipment were put forward.

2012 ◽  
Vol 192 ◽  
pp. 185-189
Author(s):  
Rong Chang Li ◽  
Ai Xia He

In order to improve the static performance of high speed machining center spindle box, using ANSYS software static performance analysis, static analysis of finite element method to the complex structure of the spindle box, draw a box structure under the force load and temperature load stiffness theoretical values, emphasizing the factors affecting temperature deformation, provides a basis to improve and control the strength and stiffness of the spindle box, as well as box optimization design of the design constraints.


2018 ◽  
Vol 68 (12) ◽  
pp. 2941-2947
Author(s):  
George Ungureanu ◽  
Gabriela Ignat ◽  
elena Leonte ◽  
Carmen Luiza Costuleanu ◽  
Nicoleta Stanciu ◽  
...  

The problem associated with the household behavior on solid waste disposal site in today�s society is complex because of the large quantity and diverse nature of the wastes. Due increase the population, rapid development, global agricultural development has moved rapidly, limitations of financing, emerging limitations of both energy and raw materials and also add to the complexity of any waste management system, large quantities of wastes are being generated in different forms such as solid, liquid and gases. This research explored factors affecting the level of participation in solid waste segregation and recycling of households in Romania, as well as examining current Romania households waste management practices and their knowledge of waste management. This study investigated the solid waste situation and the organization of solid waste management in both urban and rural settings from the perspective of households. Solid waste management is a key component of public services which needs to serve the urban and rural municipalities in an efficient way in order to maintain a decent standard of public health.


2021 ◽  
Vol 13 (15) ◽  
pp. 8554
Author(s):  
Zhen Li ◽  
Wanmin Zhao ◽  
Miaoyao Nie

This paper applies fractal theory to research of green space in megacity parks due to the lack of a sufficient qualitative description of the scale structure of park green space, a quantifiable evaluation system, and operable planning methods in traditional studies. Taking Beijing, Shanghai, Guangzhou, and Shenzhen as examples, GIS spatial analysis technology and the Zipf model are used to calculate the fractal dimension (q), the goodness of fit (R2), and the degree of difference (C) to deeply interpret the connotation of indicators and conduct a comparative analysis between cities to reveal fractal characteristics and laws. The research results show that (1) the fractal dimension is related to the complexity of the park green space system; (2) the fractal dimension characterizes the hierarchical iteration of the park green space to a certain extent and reflects the internal order of the scale distribution; (3) the scale distribution of green space in megacity parks deviates from the ideal pyramid configuration; and (4) there are various factors affecting the scale structure of park green space, such as natural base conditions, urban spatial structure, and the continuation of historical genes working together. On this basis, a series of targeted optimization strategies are proposed.


Author(s):  
Zijian Guo ◽  
Tanghong Liu ◽  
Wenhui Li ◽  
Yutao Xia

The present work focuses on the aerodynamic problems resulting from a high-speed train (HST) passing through a tunnel. Numerical simulations were employed to obtain the numerical results, and they were verified by a moving-model test. Two responses, [Formula: see text] (coefficient of the peak-to-peak pressure of a single fluctuation) and[Formula: see text] (pressure value of micro-pressure wave), were studied with regard to the three building parameters of the portal-hat buffer structure of the tunnel entrance and exit. The MOPSO (multi-objective particle swarm optimization) method was employed to solve the optimization problem in order to find the minimum [Formula: see text] and[Formula: see text]. Results showed that the effects of the three design parameters on [Formula: see text] were not monotonous, and the influences of[Formula: see text] (the oblique angle of the portal) and [Formula: see text] (the height of the hat structure) were more significant than that of[Formula: see text] (the angle between the vertical line of the portal and the hat). Monotonically decreasing responses were found in [Formula: see text] for [Formula: see text] and[Formula: see text]. The Pareto front of [Formula: see text] and[Formula: see text]was obtained. The ideal single-objective optimums for each response located at the ends of the Pareto front had values of 1.0560 for [Formula: see text] and 101.8 Pa for[Formula: see text].


Author(s):  
Amin Najafi ◽  
Mohammad Saeed Seif

Determination of high-speed crafts’ hydrodynamic coefficients will help to analyze the dynamics of these kinds of vessels and the factors affecting their dynamic stabilities. Also, it can be useful and effective in controlling the vessel instabilities. The main purpose of this study is to determine the coefficients of longitudinal motions of a planing catamaran with and without a hydrofoil using Reynolds-averaged Navier–Stokes method to evaluate the foil effects on them. Determination of hydrodynamic coefficients by experimental approach is costly and requires meticulous laboratory equipment; therefore, utilizing the numerical methods and developing a virtual laboratory seem highly efficient. In this study, the numerical results for hydrodynamic coefficients of a high-speed craft are verified against Troesch’s experimental results. In the following, after determination of hydrodynamic coefficients of a planing catamaran with and without foil, the foil effects on its hydrodynamic coefficients are evaluated. The results indicate that most of the coefficients are frequency-independent especially at high frequencies.


2013 ◽  
Vol 745-746 ◽  
pp. 197-202 ◽  
Author(s):  
Chang Qing Ye ◽  
Zi Gang Deng ◽  
Jia Su Wang

t was theoretically and experimentally proved that High Temperature Superconducting (HTS) Maglev had huge potential employment in rail transportation and high speed launch system. This had attracted great research interests in practical engineering. The optimization design was one of the most important works in the application of the HTS Maglev. As the NdFeB permanent magnet and HTS materials prices increased constantly, the design optimization of the permanent guideway (PMG) of HTS maglev became one of the indispensable works to decrease the cost of the application. This paper first reviewed four types of PMGs used by the HTS Maglev, then disucssed their structures and magnetic fields. Finally, the optimization methods of these four PMGs were compared. It was suggested that with better optimization methods, the levitation performance within a limit cost got better. That would be helpful to the future numerical optimization of the PMG of the HTS maglev.


2013 ◽  
Vol 380-384 ◽  
pp. 39-42
Author(s):  
Shun Xi Gao ◽  
Shu Guo Zhao ◽  
Li Fang Zhao

This paper establishes a parametric model on the motor hanging seat structure by pro / ENGINEER software, and then optimizes the structure of the hanging seat by the weight of the hanging seat as the objective function. Taking into account the stress and displacement constraints in the optimization process, the weight of the hanging seat is greatly reduced after being optimized. It is practical significance to save a large amount of raw materials for the mass production and to reduce production costs and create higher economic efficiency.


2011 ◽  
Vol 347-353 ◽  
pp. 4051-4054 ◽  
Author(s):  
Jian Chu ◽  
Volodymyr Ivanov ◽  
Viktor Stabnikov ◽  
Jia He ◽  
Bing Li ◽  
...  

Cement and chemical grouts have often been used for soil strengthening. However, high cost, energy consumption, and harm to environment restrict their applications. Biocement could be a new green building- material and energy-saving material. Biocement is a mixture of enzymes or microbial biomass with inorganic chemicals, which can be produced from cheap raw materials. Supply of biocementing solution to the porous soil or mixing of dry biocement with clayey soil initiate biocementation of soil due to specific enzymatic activity. Different microorganisms and enzymes can be used for production of biocement.


Sign in / Sign up

Export Citation Format

Share Document