scholarly journals Mathematical Model of Micropolar Lubricant Considering Viscosity-Pressure Dependence

2021 ◽  
Vol 2096 (1) ◽  
pp. 012104
Author(s):  
A V Morozova ◽  
N S Zadorozhnaya ◽  
M A Mukutadze ◽  
V I Kirishchieva

Abstract In the study, based on the micropolar fluid flow equation for a “thin layer”, the continuity equation, the equation describing the profile of the molten contour of the guide coated with a low-melting metal alloy, and the equation for the mechanical energy dissipation rate, asymptotic and exact self-similar solution has been found for the zero (without considering the melting) and first (considering the melting) approximation of wedge-shaped support with the slider support profile adapted to the friction conditions and the low-melting metal coating of the guide surface. The research has taken into account the pressure dependence of the lubricant rheological properties and the melt having micropolar properties in the laminar flow regime. Analytical dependencies have been obtained for the molten surface profile of the low-melting metal coating of the guide and the field of velocities and pressure for the zero and first approximations. Also, the basic performance characteristics of the friction pair under consideration have been determined: the bearing capacity and the friction force. The impact of parameters determined by the coating melt, adapted to the support profile friction conditions, and the parameter characterizing the pressure dependence of the lubricant viscosity on the bearing capacity and friction force has been estimated.

2021 ◽  
Vol 2096 (1) ◽  
pp. 012023
Author(s):  
M A Mukutadze ◽  
M V Novakovich ◽  
N S Zadorozhnaya

Abstract The paper presents a study based upon: a Newtonian fluid flow equation (“thin layer”), a continuity equation, and an equation of the molten-profile radius for a shaft coated with a fusible metal alloy; considering a mechanical energy dissipation rate formula, the authors produced an asymptotic and accurate automodel solution for the zero approximation (melting ignored) and first approximation (adjusted for melting) of a radial plain bearing featuring a fusible metal coating and a bearing profile adapted to the specific friction parameters. The paper further presents analytical dependencies describing the molten surface radius, velocity and pressure fields for zero and first approximation. Besides, it determines the key operating parameters of the frictional couple, the bearing capacity, and the friction. It also shows how the parameters arising from the melting of the surface affect the bearing capacity and friction where the bearing surface profile is adapted to the specific conditions of friction.


2021 ◽  
Vol 2061 (1) ◽  
pp. 012037
Author(s):  
G D Vernigora ◽  
E V Kruchinina ◽  
M A Mukutadze

Abstract The authors propose an asymptotic and exact self-similar solution for zero (without considering the melt) and the first (considering the melt) approximation of a wedge-shaped sliding support with a profile adapted to friction and a fusible metal coating of the guide surface. The solution is based on the equation of a micropolar liquid flow for a “thin layer”, the continuity equation, as well as the equation describing the profile of the molten contour of a guide coated with a fusible metal alloy. The authors have taken into account the formula of the rate of mechanical energy dissipation as well as rheological properties of the lubricant and the melt, which have micropolar properties in the laminar flow mode at incomplete filling of the working gap. Analytical dependences have been obtained for the profile of the molten surface of the guide coated with a low-melting metal alloy, as well as for the velocity and pressure fields at zero and first approximation. In addition, the main operating characteristics of the friction pair under consideration have been determined: the bearing capacity and the friction force. The article contains estimation of the influence of the parameters conditioned by coating melt and adapted to the friction conditions of the support profile, and the parameter characterizing the rheological properties of the lubricant, as well as the length of the loaded area in terms of bearing capacity and friction force.


2021 ◽  
Vol 2131 (2) ◽  
pp. 022039
Author(s):  
A Mukutadze ◽  
V Prikhodko ◽  
I Dolgiy

Abstract This paper outlines a new approach for finding an asymptotic and exact self-similar solution for the zero and first (without taking into account the melt and considering the melt, respectively) approximation of the wedge-shaped plain bearing with a non-standard support profile of the slide and the low-melting metal coating of the surface. The given approach is based on the flow equation of a ferromagnetic fluid for a «thin layer», the continuity equation, as well as the equation describing the profile of the guide’s molten contour. The proposed method takes into account the dependence of the rheological properties of the lubricant and the melt that have ferromagnetic properties in the laminar flow on pressure. We have succeeded in obtaining accurate analytical dependences for the field of velocities and pressure at zero and first approximations and the ones for the profile of the guide’s molten surface. Besides, we have managed to determine the key performance properties for the slide–guide friction pair, including load-bearing capacity and friction force. Finally, we could assess how the bearing capacity and friction force are influenced by parameters caused by the coating melt adapted to the conditions of the support profile friction and a parameter that characterize the rheological properties of the lubricant.


2015 ◽  
Vol 220-221 ◽  
pp. 230-238
Author(s):  
Stanisław Laber ◽  
Alicja Laber

This paper presents the results of research into the effect of the use of an additive to the lubricating oil SAE 15W/40 on the lubricating properties (standardised tests), i.e. the weld point Pz, last non-seizure load Pn, load-wear index Ih, and seizure load Pt. The friction pair consisted of four balls and the tested lubricant. Moreover, the impact of the use of the lubricating oil (non-standardised tests) on tribological properties such as friction force, wear, and the temperature of the friction area for the friction pair C45 steel/210Cr12 steel, was explored. The additive contained copper and lead particles of the size of a few micrometers. The tests helped to determine the effect of the use of the additive to the lubricant on the formation of the operational surface layer. The results were used to build a model of the boundary layer formed as a result of the additive to the lubricating oil.


1991 ◽  
Vol 56 (9) ◽  
pp. 1856-1867 ◽  
Author(s):  
Zdzisław Jaworski ◽  
Ivan Fořt

Mechanical energy dissipation was investigated in a cylindrical, flat bottomed vessel with four radial baffles and the pitched blade turbine impeller of varied size. This study was based upon the experimental data on the hydrodynamics of the turbulent flow of water in an agitated vessel. They were gained by means of the three-holes Pitot tube technique for three impeller-to-vessel diameter ratio d/D = 1/3, 1/4 and 1/5. The experimental results obtained for two levels below and two levels above the impeller were used in the present study. Radial profiles of the mean velocity components, static and total pressures were presented for one of the levels. Local contribution to the axial transport of the agitated charge and energy was presented. Using the assumption of the axial symmetry of the flow field the volumetric flow rates were determined for the four horizontal cross-sections. Regions of positive and negative values of the total pressure of the liquid were indicated. Energy dissipation rates in various regions of the agitated vessel were estimated in the range from 0.2 to 6.0 of the average value for the whole vessel. Hydraulic impeller efficiency amounting to about 68% was obtained. The mechanical energy transferred by the impellers is dissipated in the following ways: 54% in the space below the impeller, 32% in the impeller region, 14% in the remaining part of the agitated liquid.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5824
Author(s):  
Weronika Czepułkowska-Pawlak ◽  
Emilia Wołowiec-Korecka ◽  
Leszek Klimek

Abrasive blasting is a process widely used in dentistry. One of the uses is the development of metal surfaces for connections with ceramics in fixed prosthetic restorations. The purpose of this paper was to check how the rough surface profile (width, height, and depth on unevenness) impacts the surface’s condition, like its wettability and percentage of stuck abrasives. The Ni-Cr alloy surface was abrasive blasted by silicon carbide with the various pressure parameters (0.2, 0.4, and 0.6 MPa) and abrasive particle sizes (50, 110, and 250 µm). Cleaned surfaces were examined for roughness, wettability, and percentage of stuck abrasive particles on the surface. The surface after abrasive blasting using 110 µm of abrasive size and 0.4 MPa pressure has the best wettability results. The width of unevenness may cause it. When the unevenness has too small or too large width and depth, the fluids may not cover the entire cavities because of locking the air. The surface condition of dental alloys directly affects metal–ceramic connection strength. The knowledge about the impact of the abrasive blasting parameters on the bond strength will allow one to create durable dental restorations.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 75 ◽  
Author(s):  
Jerzy Jozwik ◽  
Krzysztof Dziedzic ◽  
Marcin Barszcz ◽  
Mykhaylo Pashechko

Phenomena occurring in the contact area between two mating bodies are characterised by high complexity and variability. Comparisons are usually made between parameters such as the coefficient of friction, friction force, wear and temperature in relation to time and friction path. Their correct measurement enables the proper evaluation of tribological properties of materials used in the friction pair. This paper concerns the measurements of basic tribological parameters in the friction of selected polymer composites. Knowing the tribological properties of these composite materials, it will be possible to create proper operating conditions for kinematic friction pairs. This study investigated the coefficients of friction, friction force and temperatures of six polymer composites: cast polyamide PA6 G with oil, PA6 G with MoS2, polyoxymethylene POM with aluminium, polyethylene terephthalate PET with polytetrafluoroethylene PTFE, PTFE with bronze, and PTFE with graphite. The friction surface was also examined using an optical system and computer software for 3D measurements. As a result, PA6-G with oil was found to be the best choice as a composite material for thin sliding coatings.


2021 ◽  
pp. 1-24
Author(s):  
Seung Guk Baek ◽  
Hyungpil Moon ◽  
Hyouk Ryeol Choi ◽  
Ja Choon Koo

Abstract Humans come into physical contacts with various machines such as robots in daily life. This leads to the underlying issue of guaranteeing safety during such human-robot interactions. Thus, many devices and methods have been studied for impact damage reduction. A safety joint mechanism (SJM) using four-bar linkages has been highlighted as an impact cutoff device owing to its capabilities of nonlinear load transfer. This paper focuses on a new design and testing for a kinematic element of an SJM based on four-bar linkages to improve the impact cutoff performances. In the present work, a set of variable-length floating link designs is proposed, and the mechanism is implemented by mechanical contact surface profile shaping between the cams and followers. The performance of the cam-follower mechanism is evaluated depending on the variable length of the floating link, by using equivalent stiffness method, which successfully quantifies the performance of the proposed mechanism. Based on this design and analysis, two SJMs having symmetrical arrangements for four numbers of cam-follower mechanisms are fabricated: one SJM has fixed-length floating links and the other has variable-length floating links. The effect of the new kinematic elements on the performance improvement is verified by comparing the absorbed impact rates of the two SJMs by impact hammer-like drop tests. Consequently, it is confirmed that the rapid length change of the floating link is the core element for improving the performance of the safety mechanism.


MRS Bulletin ◽  
1992 ◽  
Vol 17 (2) ◽  
pp. 30-36 ◽  
Author(s):  
Jeff Cheung ◽  
Jim Horwitz

The laser, as a source of “pure” energy in the form of monochromatic and coherent photons, is enjoying ever increasing popularity in diverse and broad applications from drilling micron-sized holes on semiconductor devices to guidance systems used in drilling a mammoth tunnel under the English Channel. In many areas such as metallurgy, medical technology, and the electronics industry, it has become an irreplaceable tool.Like many other discoveries, the various applications of the laser were not initially defined but were consequences of natural evolution led by theoretical studies. Shortly after the demonstration of the first laser, the most intensely studied theoretical topics dealt with laser beam-solid interactions. Experiments were undertaken to verify different theoretical models for this process. Later, these experiments became the pillars of many applications. Figure 1 illustrates the history of laser development from its initial discovery to practical applications. In this tree of evolution, Pulsed Laser Deposition (PLD) is only a small branch. It remained relatively obscure for a long time. Only in the last few years has his branch started to blossom and bear fruits in thin film deposition.Conceptually and experimentally, PLD is extremely simple, probably the simplest among all thin film growth techniques. Figure 2 shows a schematic diagram of this technique. It uses pulsed laser radiation to vaporize materials and to deposit thin films in a vacuum chamber. However, the beam-solid interaction that leads to evaporation/ablation is a very complex physical phenomenon. The theoretical description of the mechanism is multidisciplinary and combines equilibrium and nonequilibrium processes. The impact of a laser beam on the surface of a solid material, electromagnetic energy is converted first into electronic excitation and then into thermal, chemical, and even mechanical energy to cause evaporation, ablation, excitation, and plasma formation.


2018 ◽  
Vol 196 ◽  
pp. 01058 ◽  
Author(s):  
Marek Wyjadłowski ◽  
Irena Bagińska ◽  
Jakub Reiner

The modern recognition of subsoil with the use of CPTu static probes allows to obtain detailed information necessary for the designing. Registered basic two quantities, i.e. cone resistance qc and friction on the sleeve fs, often become direct data, which allow to estimate bearing capacity of the base and the side surface of the pile. Direct methods use similarity of the pile work and piezo-cone work during the examination. An important design stage is the appropriate development of measurement data prior to the commencement of the procedure of determining the pile bearing capacity. Algorithms generated on the basis of empirical experiments are often applied with the simultaneous use of test loads. The probabilistic approach is also significant, because it enables objective assessment of the reliability level of performed design calculations. This work contains an analysis of the impact on the estimated bearing capacity and reliability of a pile of variable random depth of the pile base. It also includes the determination of probabilities of obtaining the assumed safety index for the designed solution at random foundation depth.


Sign in / Sign up

Export Citation Format

Share Document