scholarly journals Compressed Air Energy Storage and Future Development

2021 ◽  
Vol 2108 (1) ◽  
pp. 012037
Author(s):  
Jingyue Guo ◽  
Ruiman Ma ◽  
Huiyan Zou

Abstract Power generation around the world is changing dramatically as a consequence of the demand to lower greenhouse gas releases and present a mix of power supplies. Energy storage technology is considered to be the fundamental technology to address these challenges and has great potential. This paper presents the current development and feasibilities of compressed air energy storage (CAES) and provides implications for upcoming technology advancement. The paper introduces various primary categories of CAES (Advanced Adiabatic-CAES, Liquid Air Energy Storage and Supercritical CAES). Compared with other energy storage technologies, CAES is considered a fresh and green energy storage with the distinctive superiorities of high capacity, high power rating, and long-term storage, and shortcomings of low power density, high transportation losses, and geological restriction. CAES is regarded as a promising technology that is able to be applied in renewable energy production, cogeneration, and distributed energy and microgrid systems. It’s also considered to be integrated with other technologies, such as renewable energy, gas turbine, solid oxide fuel cells, and other systems in the future.

2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Youssef Mazloum ◽  
Haytham Sayah ◽  
Maroun Nemer

The large-scale production of renewable energy is limited by the intermittence nature of the renewable energy sources. Moreover, the electricity production of the thermal and nuclear power plants is not flexible with the electricity demand. Hence, the integration of energy storage technologies into the grid has become crucial as it creates a balance between supply and demand for electricity and protects thereby the electrical grid. Among the large-scale energy storage technologies, a novel adiabatic compressed air energy storage (A-CAES) system will be developed in this paper. This storage system is characterized, compared to the conventional compressed air energy storage (CAES) system, by the recovery and the reuse of the compression heat in order to improve the system efficiency and avoid the use of fossil fuel sources. This paper discusses a comparison between the static and dynamic modeling of the A-CAES system performed by a computer simulation using “Modelica.” Unlike the static model, the dynamic model takes into account the mechanical inertia of the turbomachinery (compressors and turbines) as well as the thermal inertia of the heat exchangers. Consequently, it enables studying the flexibility of the storage system and its ability to meet the electrical grid requirements (primary and secondary reserves) by evaluating the duration of the transient states. Furthermore, the comparison between the static and dynamic models permits to estimate the efficiency losses due to the transient evolutions.The results show that the storage system needs more than 2 min before being able to consume all the excess energy available on the electrical grid and more than 5 min before being able to produce all the energy required by the electrical grid. These time frames are due especially to the transient states (start-up) of the turbomachines. Finally, the system efficiency is 64.7%, the transient states of the system cause losses of 0.9%. These small losses are explained by the short duration of the transient states relative to that of the steady states (15 hrs).


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4054 ◽  
Author(s):  
Youssef Benchaabane ◽  
Rosa Elvira Silva ◽  
Hussein Ibrahim ◽  
Adrian Ilinca ◽  
Ambrish Chandra ◽  
...  

Remote and isolated communities in Canada experience gaps in access to stable energy sources and must rely on diesel generators for heat and electricity. However, the cost and environmental impact resulting from the use of fossil fuels, especially in local energy production, heating, industrial processes and transportation are compelling reasons to support the development and deployment of renewable energy hybrid systems. This paper presents a computer model for economic analysis and risk assessment of a wind–diesel hybrid system with compressed air energy storage. The proposed model is developed from the point of view of the project investor and it includes technical, financial, risk and environmental analysis. Robustness is evaluated through sensitivity analysis. The model has been validated by comparing the results of a wind–diesel case study against those obtained using HOMER (National Renewable Energy Laboratory, Golden, CO, United States) and RETScreen (Natural Resources Canada, Government of Canada, Canada) software. The impact on economic performance of adding energy storage system in a wind–diesel hybrid system has been discussed. The obtained results demonstrate the feasibility of such hybrid system as a suitable power generator in terms of high net present value and internal rate of return, low cost of energy, as well as low risk assessment. In addition, the environmental impact is positive since less fuel is used.


2021 ◽  
Vol 7 (4) ◽  
pp. 51
Author(s):  
Ibrahim Nabil ◽  
Mohamed Mohamed Khairat Dawood ◽  
Tamer Nabil

2020 ◽  
Vol 14 (13) ◽  
pp. 2510-2519 ◽  
Author(s):  
Mohammad Amin Mirzaei ◽  
Morteza Zare Oskouei ◽  
Behnam Mohammadi-Ivatloo ◽  
Abdolah Loni ◽  
Kazem Zare ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4188 ◽  
Author(s):  
Kangyu Deng ◽  
Kai Zhang ◽  
Xinran Xue ◽  
Hui Zhou

Renewable energy (wind and solar power, etc.) are developing rapidly around the world. However, compared to traditional power (coal or hydro), renewable energy has the drawbacks of intermittence and instability. Energy storage is the key to solving the above problems. The present study focuses on the compressed air energy storage (CAES) system, which is one of the large-scale energy storage methods. As a lot of underground coal mines are going to be closed in China in the coming years, a novel CAES system is proposed for application in roadways of the closing coal mines. The new system combines pumped-hydro and compressed-air methods, and features constant air pressure and temperature. Another specific character of the system is the usage of flexible bags to store the compressed air, which can effectively reduce air leakage. The governing equations of the system are derived, and the response of the system is analyzed. According to the equations, for a roadway with depth of 500 m and volume of 10,000 cubic meters, the power generation capacity of the CAES system is approximately 18 MW and the generating time is 1.76 h. The results show that the new CAES system proposed is reasonable, and provides a suitable way to utilize the underground space of coal mines.


2019 ◽  
Vol 114 ◽  
pp. 05005 ◽  
Author(s):  
Alexey Kazakov ◽  
Dmitry Blinov ◽  
Ivan Romanov ◽  
Dmitry Dunikov ◽  
Vasily Borzenko

Significant progress in the installation of renewable energy requires the improvement of energy production and storage technologies. Hydrogen energy storage systems based on reversible metal hydride materials can be used as an energy backup system. Metal hydride hydrogen storage systems are distinguished by a high degree of safety of their use, since hydrogen is stored in a solid phase, a high volumetric density of stored hydrogen, and the possibility of long-term storage without losses. A distinctive feature of metal hydride materials is the reversible and selective absorption and release of high-purity hydrogen. This paper presents experimental studies of LaNi5-based metal hydride materials with a useful hydrogen capacity of 1.0–1.3 wt.% H2 with equilibrium pressures of 0.025 - 0.05 MPa and 0.1 - 1.2 MPa at moderate temperatures of 295 - 353 K for the hydrogen purification systems and hydrogen long-term storage systems, respectively. The applicability of metal hydride technologies for renewable energy sources as energy storage systems in the form of hydrogen is also shown.


2012 ◽  
Vol 69 (2) ◽  
pp. 350-359 ◽  
Author(s):  
James Konrad ◽  
Rupp Carriveau ◽  
Matt Davison ◽  
Frank Simpson ◽  
David S.-K. Ting

Author(s):  
Abdulla Ahmed ◽  
Tong Jiang

<p>The wind energy plays an important role in power system because of its renewable, clean and free energy. However, the penetration of wind power (WP) into the power grid system (PGS) requires an efficient energy storage systems (ESS). compressed air energy storage (CAES) system is one of the most ESS technologies which can alleviate the intermittent nature of the renewable energy sources (RES). Nyala city power plant in Sudan has been chosen as a case study because the power supply by the existing power plant is expensive due to high costs for fuel transport and the reliability of power supply is low due to uncertain fuel provision. This paper presents a formulation of security-constrained unit commitment (SCUC) of diesel power plant (DPP) with the integration of CAES and PW. The optimization problem is modeled and coded in MATLAB which solved with solver GORUBI 8.0. The results show that the proposed model is suitable for integration of renewable energy sources (RES) into PGS with ESS and helpful in power system operation management.</p>


Sign in / Sign up

Export Citation Format

Share Document