scholarly journals Design Smart Grid Hybrid in Faculty of Engineering Universitas Negeri Yogyakarta

2021 ◽  
Vol 2111 (1) ◽  
pp. 012003
Author(s):  
Muhamad Ali ◽  
BT Djoko Laras ◽  
Muhfizaturrahmah ◽  
PS Deny

Abstract The Faculty of Engineering, Universitas Negeri Yogyakarta (UNY), as one of the educational institutions in Engineering, still uses electrical energy from PT PLN, mainly generated from steam and gas power plants. Dependence on fossil energy can be reduced by utilizing renewable power plants, both solar and wind. For this reason, it is necessary to study the use of a Smart Grid system that can regulate electricity needs by optimizing renewable power plants. The Smart Grid components consist of solar power plants, wind power plants, batteries, inverters, and grid power sources from PLN integrated into the Smart grid system. We have designed the Smart Grid system through field observations and data processing with the HOMER Pro software to obtain an optimal hybrid power generation system and wind turbine. The study results indicate that the Faculty of Engineering, UNY has excellent potential to develop smart grids. The potential for solar energy is 418.393 kWh/year, and wind energy is 2.78 kWh/year. The Smart grid system is sufficient to meet the electricity consumption of only 205.5 kWh/year.

2019 ◽  
Vol 8 (2S11) ◽  
pp. 3283-3289

The DC smart-grid-system (DCSGS) becomes more and more popular and it is seen as an alternative to the AC. In DCSGS, voltage quality and harmonic distortion issues affects the performance of integrated renewable power sources. To improve the voltage quality, SEPIC converter is used to step up the output of PV cell. In DCSGS, output of PV is stepped-up using SEPIC. The output of wind generator is also rectified and stepped-up using SEPIC. This effort covenants with modeling&-simulation of CL(closed-loop)-DC-SGS (smart grid system) with PR controller and FLC in DCSGS. The performance of DCSGS with PR and FLC are compared and their results are presented. The results indicate that FLC controlled close-loop DCSGS gives superior response


A solar-wind hybrid system plays a key role in power generation and becomes very important role to smart grid power systems. Also, the wind-solar hybrid energy storage control systems in coordination of energy markets, made economical to the electrical power system power system. Hybrid renewable energy system connected micro-grid consists of significant identification; in view of solve the rising electrical energy demand. In addition to this the problem of harmonic distortion in micro-grids due to the non-linear loads is an indispensable topic of study. Also, it is very significant for the better understanding of the power quality impacts in micro-grids. This paper presents detail analysis of different control techniques for optimization of harmonics in smart grid system and enhancement in power quality of the smart grid system. The performance of the control system is verified through the MATLAB simulation of the hybrid solar-wind electrical energy system.


2021 ◽  
Vol 7 (1) ◽  
pp. 134-136
Author(s):  
Jyoti Mante Khurpade ◽  
Vaibhav Kailas Gurap ◽  
Rudra Pramod Chopde ◽  
Aditya Pravin Chandsare ◽  
Omkar Ramdas Irole

Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1218
Author(s):  
Tan Duy Le ◽  
Adnan Anwar ◽  
Seng W. Loke ◽  
Razvan Beuran ◽  
Yasuo Tan

The smart grid system is one of the key infrastructures required to sustain our future society. It is a complex system that comprises two independent parts: power grids and communication networks. There have been several cyber attacks on smart grid systems in recent years that have caused significant consequences. Therefore, cybersecurity training specific to the smart grid system is essential in order to handle these security issues adequately. Unfortunately, concepts related to automation, ICT, smart grids, and other physical sectors are typically not covered by conventional training and education methods. These cybersecurity experiences can be achieved by conducting training using a smart grid co-simulation, which is the integration of at least two simulation models. However, there has been little effort to research attack simulation tools for smart grids. In this research, we first review the existing research in the field, and then propose a smart grid attack co-simulation framework called GridAttackSim based on the combination of GridLAB-D, ns-3, and FNCS. The proposed architecture allows us to simulate smart grid infrastructure features with various cybersecurity attacks and then visualize their consequences automatically. Furthermore, the simulator not only features a set of built-in attack profiles but also enables scientists and electric utilities interested in improving smart grid security to design new ones. Case studies were conducted to validate the key functionalities of the proposed framework. The simulation results are supported by relevant works in the field, and the system can potentially be deployed for cybersecurity training and research.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 980 ◽  
Author(s):  
Krishan Arora ◽  
Ashok Kumar ◽  
Vikram Kumar Kamboj ◽  
Deepak Prashar ◽  
Sudan Jha ◽  
...  

In the recent era, the need for modern smart grid system leads to the selection of optimized analysis and planning for power generation and management. Renewable sources like wind energy play a vital role to support the modern smart grid system. However, it requires a proper commitment for scheduling of generating units, which needs proper load frequency control and unit commitment problem. In this research area, a novel methodology has been suggested, named Harris hawks optimizer (HHO), to solve the frequency constraint issues. The suggested algorithm was tested and examined for several regular benchmark functions like unimodal, multi-modal, and fixed dimension to solve the numerical optimization problem. The comparison was carried out for various existing models and simulation results demonstrate that the projected algorithm illustrates better results towards load frequency control problem of smart grid arrangement as compared with existing optimization models.


2021 ◽  
Vol 300 ◽  
pp. 01004
Author(s):  
Guang Chen ◽  
Mingda He ◽  
Chang Liu ◽  
Jianbin Gao

Blockchain and the Internet of Things (IoT) complements each other within the space of decentralization, real time monitoring, and data sharing and security. In this paper we explored the integration of blockchain and IoT within the context of smart grid. Current REC system lacks visibility and transparency which are very critical to the success of smart grids. Conventional smart grid system makes it difficult to proof whether a buyer has truly received an energy certificate or not. Therefore, we proposed a blockchain and IoT based system for autonomous monitoring of energy sources and tracking of RECs on smart grid. Our system provides the visibility and transparency on smart grid networks that is imperative to safeguarding RECs market. Results based on extensive experiments illustrate the efficiency and scalability of our system.


Author(s):  
Bayu Prasetyo ◽  
Faiz Syaikhoni Aziz ◽  
Anik Nur Handayani ◽  
Ari Priharta ◽  
Adi Izhar Bin Che Ani

The increasing need for electrical energy requires suppliers to innovate in developing electric distribution systems that are better in terms of quality and affordability. In its development, it is necessary to have a control that can combine the electricity network from renewable energy and the main network through voltage back-up or synchronization automatically. The purpose of this research is to create an innovative lux and current analysis on a lab-scale smart grid system using a fuzzy logic controller to control the main network, solar panel network and generator network to supply each other with lab-scale electrical energy. In the control, Mamdani fuzzy logic controller method is used as the basis for determining the smart grid system control problem solving by adjusting the current conditions on the main network and the light intensity conditions on the LDR sensor. Current conditions are classified in three conditions namely safe, warning, and trip. Meanwhile, the light intensity conditions are classified into three conditions namely dark, cloudy and bright. From the test results, the utility grid (PLN) is at active conditions when the load current is 0.4 A (safe) and light intensity is 1,167 Lux (dark). Then the PLN + PV condition is active when the load current is 1.37 (warning) and the light intensity is 8,680 lux (bright). Finally, the generator condition is active when the load current is 1.6 (trip) and the light intensity is 8,680 (bright). Based on the test results, it is known that the system can work to determine which source is more efficient based on the parameters obtained.


2020 ◽  
Vol 12 (12) ◽  
pp. 14-30
Author(s):  
Aleksey B. LOSKUTOV ◽  
◽  
Aleksandr L. KULIKOV ◽  
Pavel V. ILYUSHIN ◽  
◽  
...  

Owing to adoption of the GOELRO plan in 1920 and its stage-by-state implementation, it became possible to meet the country’s needs for intense development of its economy through providing the required amounts of electricity to all sectors of the national economy. Nowadays, the smart grid technologies open the possibility to carry out «digital updating» of the grids to obtain their better observability and controllability, smaller losses in them, and to ensure reliable operation of distributed and renewable power generating facilities, which have become new participants in the electricity market. The use of smart grid technologies opens the possibility to optimally integrate heterogeneous electric power sources, backbone and distribution networks, and also active consumers into a unified electric power complex for achieving the economic and environmental objectives. The article considers modern innovative and prospective technologies of smart grids and outlines historical parallels with the GOELRO plan, which determined the course for electrification of Russia.


Sign in / Sign up

Export Citation Format

Share Document