scholarly journals Solving Multiple Triggering Problem of Ultrasonic Distance Measurement by Debouncing

2021 ◽  
Vol 2113 (1) ◽  
pp. 012027
Author(s):  
Zhenhua Xiang

Abstract In recent years, multiple measurement systems fusion technologies have developed rapidly. Ultrasonic ranging is paid much attention because it has the advantages of directly measuring short-distance targets, high longitudinal resolution, and a wide application range. However, when the ultrasonic distance measurement is carried out by assembling the circuit board, it is found that the switch is triggered multiple times, and the measurement data is inaccurate. This paper proposes a new method that adding debounce to improve the accuracy of measurement. Besides, Some suggestions are provided to decrease the operation difficulty in the actual measurement process. Based on the experimental result, the accuracy and efficiency of ultrasonic distance measurement are greatly improved via this method proposed in this paper. By the way, the single-chip computer simulation technology simulates the ranging phenomenon in the experiment.

2019 ◽  
Vol 8 (2) ◽  
pp. 21
Author(s):  
Agnieszka Czapiewska

A new positioning algorithm for distance measurement systems is outlined herein. This algorithm utilizes a non-linear error function which allows us to improve the positioning accuracy in highly difficult indoor environments. The non-linear error function also allows us to adjust the performance of the algorithm to the particular environmental conditions. The well-known positioning algorithms have limitations, mentioned by their authors, which make them unsuitable for positioning in an indoor environment. In this article, there is a brief discussion about the most popular positioning algorithms with consideration of the indoor environment. The new positioning algorithm is described in detail and a comparative performance analysis of the well-known algorithms and the proposed one is conducted. Those research results are achieved with the utilization of real distance measurement data, collected inside a few different buildings, and they show that the proposed algorithm outperforms the Chan and Foy algorithms in indoor environments. In this article the Automatic Person Localization System (SALOn) is also presented, which was utilized to collect measurement data.


2014 ◽  
Vol 563 ◽  
pp. 199-202 ◽  
Author(s):  
Jian Qiang Zhang ◽  
Jun Zhang ◽  
Hong Yan Zhao

This paper introduces one ultrasonic distance measurement device based on single chip processor and mainly describes its hardware circuit and software design. The ultrasonic distance measurement device has many merits such as simple structure, low-cost, high-accuracy, microminiaturization, digital display and so on; this result reaches the expected target. The practice result shows that the ultrasonic telemeter has very high generalizing value.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1999 ◽  
Author(s):  
Skoczylas Norbert ◽  
Anna Pajdak ◽  
Katarzyna Kozieł ◽  
Leticia Teixeira Palla Braga

The goal of this paper is to analyze the phenomenon of gas emission during a methane and coal outburst based on the unipore Crank diffusion model for spherical grains and plane sheets. Two occurrences in the Upper Silesian Coal Basin were analyzed: an outburst in a Zofiówka coal mine in 2005 and an outburst in a Budryk coal mine in 2012. Those two outbursts differed considerably. The first one was connected with an unidentified tectonic disturbance in the form of a triple, interlocking fault, and the other one is an example of an outburst in an area free from tectonic disturbances. The model analysis required laboratory tests in order to determine the sorption properties of coals from post-outburst masses. Sorption isotherms and the values of the effective diffusion coefficient were specified. The post-outburst masses were subjected to sieve analysis and the grain composition curves were plotted. The researchers also used the measurement data provided by proper mine services, such as the methane content, the volume of post-outburst masses, and the time courses of CH4 concentration changes in excavations. They were recorded by methane measurement systems in the mines.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Qilong Xue ◽  
Ruihe Wang ◽  
Baolin Liu ◽  
Leilei Huang

In the oil and gas drilling engineering, measurement-while-drilling (MWD) system is usually used to provide real-time monitoring of the position and orientation of the bottom hole. Particularly in the rotary steerable drilling technology and application, it is a challenge to measure the spatial attitude of the bottom drillstring accurately in real time while the drillstring is rotating. A set of “strap-down” measurement system was developed in this paper. The triaxial accelerometer and triaxial fluxgate were installed near the bit, and real-time inclination and azimuth can be measured while the drillstring is rotating. Furthermore, the mathematical model of the continuous measurement was established during drilling. The real-time signals of the accelerometer and the fluxgate sensors are processed and analyzed in a time window, and the movement patterns of the drilling bit will be observed, such as stationary, uniform rotation, and stick–slip. Different signal processing methods will be used for different movement patterns. Additionally, a scientific approach was put forward to improve the solver accuracy benefit from the use of stick–slip vibration phenomenon. We also developed the Kalman filter (KF) to improve the solver accuracy. The actual measurement data through drilling process verify that the algorithm proposed in this paper is reliable and effective and the dynamic measurement errors of inclination and azimuth are effectively reduced.


2021 ◽  
Vol 7 (2) ◽  
pp. 496-499
Author(s):  
Stadler B. Eng. Sebastian ◽  
Herbert Plischke ◽  
Christian Hanshans

Abstract Bioimpedance analysis is a label-free and easy approach to obtain information on cellular barrier integrity and cell viability more broadly. In this work, we introduce a small, low-cost, portable in vitro impedance measurement system for studies where a shadow-free exposure of the cells is a requirement. It can be controlled by a user-friendly web interface and can perform measurements automated and autonomously at short intervals. The system can be integrated into an existing IoT network for remote monitoring and indepth analyses. A single-board computer (SBC) serves as the central unit, to control, analyze, store and forward the measurement data from the single-chip impedance analyzer. Various materials and manufacturing methods were used to produce a purpose-built lid on top of a modified 24-well microtiter plate in a “do it yourself” fashion. Furthermore, three different sensor designs were developed utilizing anodic aluminum oxide (AAO) membranes and gold-plated electrodes. Preliminary tests with potassium chloride (KCl) showed first promising results.


Author(s):  
A. Stamatis ◽  
N. Aretakis ◽  
K. Mathioudakis

An approach for identification of faults in blades of a gas turbine, based on physical modelling is presented. A measured quantity is used as an input and the deformed blading configuration is produced as an output. This is achieved without using any kind of “signature”, as is customary in diagnostic procedures for this kind of faults. A fluid dynamic model is used in a manner similar to what is known as “inverse design methods”: the solid boundaries which produce a certain flow field are calculated by prescribing this flow field. In the present case a signal, corresponding to the pressure variation on the blade-to-blade plane, is measured. The blade cascade geometry that has produced this signal is then produced by the method. In the paper the method is described and applications to test cases are presented. The test cases include theoretically produced faults as well as experimental cases, where actual measurement data are shown to produce the geometrical deformations which existed in the test engine.


2018 ◽  
Vol 7 (5) ◽  
pp. 416-424
Author(s):  
Tsutomu Miyauchi ◽  
Kenji Imamoto ◽  
Keiko Teramura ◽  
Hirotaka Takahashi

2013 ◽  
Vol 742 ◽  
pp. 497-500
Author(s):  
Meng Lin Xu ◽  
De Shen Zhao

Based on actual measurement data in Da Ping as the samples,according to the experience, and ends with calculate every factors weight and height prediction of the water conducted zone by Matlab using the combination entropy-weight method and analytic hierarchy process. this paper introduces a comprehensive prediction model consisting of analytic hierarchy process and combination entropy-weight method. The method,overcoming weights imbalance,gives the evaluation result better than does the single analytic hierarchy process, it is a new valid method for scientific forecast on water conducted zone.


Author(s):  
R. Lunderstädt ◽  
K. Fiedler

In the paper to be presented diagnostic procedures on the basis of a gas path analysis are applied on a two-shaft jet engine. Starting from the mathematical model of the engine a filter-algorithm is used which delivers from actual measurement data the state of the engine for different working conditions. The procedure is proven for some examples and discussed in regard of its practical significance.


Sign in / Sign up

Export Citation Format

Share Document