scholarly journals Characteristics of Separation and Induced Drag in the Use of Swept-back Wing Unmanned Aerial Vehicle

2021 ◽  
Vol 2117 (1) ◽  
pp. 012013
Author(s):  
S P Setyo Hariyadi ◽  
Sutardi ◽  
Sukahir ◽  
Jamaludin

Abstract The swept-back wing has been used in almost all aircraft wings. This is necessary to reduce the pressure drag from the wings so that there is an increase in aerodynamic performance. The aerodynamic performance is the ratio between the total drag coefficient and the lift coefficient. This research attempts to explain the swept-back wing phenomenon in unmanned aerial vehicles (UAV) on Eppler 562 airfoil. The numerical simulation uses the k-ε turbulent model at Reynolds number (Re) = 2.34 x 104. Variation of backward swept angle Λ = 0°, 15°, and 30°. The separation growth Λ = 0° occurred more on the wing root, while Λ = 15° and Λ = 30° occurred more on the wingtip. At Λ = 15°, as the angle of attack increases, the area of the separation increases, and the area of the transition towards the separation decreases. The reattach area also has an increase in the area of the trailing edge. At Λ = 30°, with an increase in the angle of attack, there is a shift from the wingtip area to the mid-span. The area of separation and transition to separation has increased significantly. The re-attach area at α = 8o has not been seen, so at α = 12o it has been seen significantly. The vorticity on the x-axis shows Λ = 15°, and Λ = 30° has a wider area while on the z-axis, Λ = 15°, and Λ = 30° have stronger vortex strength. However, in the mid-span, Λ = 0° has a stronger result.

Author(s):  
Setyo Hariyadi

Winglet attached on the tip of aircraft wings to increase lift. Mainly, winglet used for increasing aerodynamic efficiency, it decreases induced drag caused by vortex on wings tip. The phenomenon of vortex is collision of high-pressured air below the wings meet the low-pressured air above it that cause turbulence. Induced drag may reach 40% of total drag during cruising, and 80-90% while take off. A procedure to decrease induced drag is using wing tip devices. It used on commercial aircrafts and the most frequently used is blended winglet. Numerical study conducted to examine the best aerodynamic performance of sub-sonic plane wings in angles of attack. Analysis on NACA 23018 airfoil wings with blended winglet on the tip was conducted. Freestream velocity of 40 m/s or Re = 1 × 106, and angle of attack (α) 0o, 5o, 10o, and 15o are used. Evaluation for parameter includes coefficient pressure (Cp), velocity profile, lift, drag, and ratio CL/CD. Obtained contour are pressure contour, velocity, and vorticity. In view of all this, there is increasing performance of aerodynamic with CL/CD ratio of wings with blended winglet and plain wing. Reaching current angle of attack, the function of winglet is gradually decrease.


2019 ◽  
Vol 256 ◽  
pp. 02004
Author(s):  
Nornashiha Mohd Saad ◽  
Wirachman Wisnoe ◽  
Rizal Effendy Mohd Nasir ◽  
Zurriati Mohd Ali ◽  
Ehan Sabah Shukri Askari

This paper presents an aerodynamic characteristic study in longitudinal direction of UiTM Blended Wing Body-Unmanned Aerial Vehicle Prototype (BWB-UAV Prototype) equipped with horizontal stabilizers. Flight tests have been conducted and as the result, BWB experienced overturning condition at certain angle of attack. Horizontal stabilizer was added at different location and size to overcome the issue during the flight test. Therefore, Computational Fluid Dynamics (CFD) analysis is performed at different configuration of horizontal stabilizer using Spalart - Allmaras as a turbulence model. CFD simulation of the aircraft is conducted at Mach number 0.06 or v = 20 m/s at various angle of attack, α. The data of lift coefficient (CL), drag coefficient (CD), and pitching moment coefficient (CM) is obtained from the simulations. The data is represented in curves against angle of attack to measure the performance of BWB prototype with horizontal stabilizer. From the simulation, configuration with far distance and large horizontal stabilizer gives steeper negative pitching moment slope indicating better static stability of the aircraft.


Aerospace ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 23 ◽  
Author(s):  
David Communier ◽  
Ruxandra Mihaela Botez ◽  
Tony Wong

This paper presents the design and wind tunnel testing of a morphing camber system and an estimation of performances on an unmanned aerial vehicle. The morphing camber system is a combination of two subsystems: the morphing trailing edge and the morphing leading edge. Results of the present study show that the aerodynamics effects of the two subsystems are combined, without interfering with each other on the wing. The morphing camber system acts only on the lift coefficient at a 0° angle of attack when morphing the trailing edge, and only on the stall angle when morphing the leading edge. The behavior of the aerodynamics performances from the MTE and the MLE should allow individual control of the morphing camber trailing and leading edges. The estimation of the performances of the morphing camber on an unmanned aerial vehicle indicates that the morphing of the camber allows a drag reduction. This result is due to the smaller angle of attack needed for an unmanned aerial vehicle equipped with the morphing camber system than an unmanned aerial vehicle equipped with classical aileron. In the case study, the morphing camber system was found to allow a reduction of the drag when the lift coefficient was higher than 0.48.


AVIA ◽  
2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Y Parlindungan ◽  
S Tobing

This study is inspired by the flapping motion of natural flyers: insects. Many insects have two pairs of wings referred as tandem wings. Literature review indicates that the effects of tandem wing are influenced by parameters such as stagger (the stream-wise distance between the aerodynamic center of the front and the rear airfoil), angle-of-attack and flow velocity. As a first stage, this study focuses on the effects of stagger (St) on the aerodynamic performance of tandem wings. A recent numerical study of stagger on tandem airfoils in turbulent flow (Re = 6000000) concluded that a larger stagger resulted in a decrease in lift force, and an increase in drag force. However, for laminar flow (Re = 2000), increasing the stagger was not found to be detrimental for aerodynamic performance. Another work also revealed that the maximum lift coefficient for a tandem configuration decreased with increasing stagger. The focus of this study is to perform an experimental analysis of tandem two-dimensional (2D) NACA 0012 airfoils. The two airfoils are set at the same angle-of-attack of 0° to 15° with 5° interval and three variations of stagger: 1c, 1.5c and 2c. The experiments are conducted using an open-loop-subsonic wind tunnel at a Reynolds number of 170000. The effects of St on the aerodynamic forces (lift and drag) are analyzed


Aerospace ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 126 ◽  
Author(s):  
Joel Guerrero ◽  
Marco Sanguineti ◽  
Kevin Wittkowski

Winglets are commonly used drag-reduction and fuel-saving technologies in today’s aviation. The primary purpose of the winglets is to reduce the lift-induced drag, therefore improving fuel efficiency and aircraft performance. Traditional winglets are designed as fixed devices attached at the tips of the wings. However, because they are fixed surfaces, they give their best lift-induced drag reduction at a single design point. In this work, we propose the use of variable cant angle winglets which could potentially allow aircraft to get the best all-around performance (in terms of lift-induced drag reduction), at different angle-of-attack values. By using computational fluid dynamics, we study the influence of the winglet cant angle and sweep angle in the performance of a benchmark wing at a Mach number of 0.8395. The results obtained demonstrate that by carefully adjusting the cant angle, the aerodynamic performance can be improved at different angles of attack.


2005 ◽  
Vol 29 (4) ◽  
pp. 331-339 ◽  
Author(s):  
Liu Hong ◽  
Huo Fupeng ◽  
Chen Zuoyi

Optimum aerodynamic performance of a wind turbine blade demands that the angle of attack of the relative wind on the blade remains at its optimum value. For turbines operating at constant speed, a change in wind speed causes the angle of attack to change immediately and the aerodynamic performance to decrease. Even with variable speed rotors, intrinsic time delays and inertia have similar effects. Improving the efficiency of wind turbines under variable operating conditions is one of the most important areas of research in wind power technology. This paper presents findings of an experimental study in which an oscillating air jet located at the leading edge of the suction surface of an aerofoil was used to improve the aerodynamic performance. The mean air-mass flowing through the jet during each sinusoidal period of oscillation equalled zero; i.e. the jet both blew and sucked. Experiments investigated the effects of the frequency, momentum and location of the jet stream, and the profile of the turbine blade. The study shows significant increase in the lift coefficient, especially in the stall region, under certain conditions. These findings may have important implications for wind turbine technology.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 959 ◽  
Author(s):  
Xinkai Li ◽  
Ke Yang ◽  
Xiaodong Wang

To explore the effect of the height of vortex generators (VGs) on the control effect of boundary-layer flow, the vortex characteristics of a plate and the aerodynamic characteristics of an airfoil for VGs were studied by both wind tunnel experiments and numerical methods. Firstly, the ratio of VG height (H) to boundary layer thickness (δ) was studied on a flat plate boundary layer; the values of H are 0.1δ, 0.2δ, 0.5δ, 1.0δ, 1.5δ, and 2.0δ. Results show that the concentrated vortex intensity and VG height present a logarithmic relationship, and vortex intensity is proportional to the average kinetic energy of the fluid in the height range of the VG. Secondly, the effects of height on the aerodynamic performance of airfoils were studied in a wind tunnel using three VGs with H = 0.66δ, 1.0δ, and 1.33δ. The stall angle of the airfoil with and without VGs is 18° and 8°, respectively, so the VGs increase the stall angle by 10°. The maximum lift coefficient of the airfoil with VGs increases by 48.7% compared with the airfoil without VGs, and the drag coefficient of the airfoil with VGs is 84.9% lower than that of the airfoil without VGs at an angle of attack of 18°. The maximum lift–drag ratio of the airfoil with VGs is lower than that of the airfoil without VGs, so the VGs do not affect the maximum lift–drag ratio of the airfoil. However, a VG does increase the angle of attack of the best lift–drag ratio.


Author(s):  
Boris A. Mandadzhiev ◽  
Michael K. Lynch ◽  
Leonardo P. Chamorro ◽  
Aimy A. Wissa

Robust and predictable aerodynamic performance of unmanned aerial vehicles at the limits of their design envelope is critical for safety and mission adaptability. In order for a fixed wing aircraft to maintain the lift necessary for sustained flight at very low speeds and large angles of attack (AoA), the wing shape has to change. This is often achieved by using deployable aerodynamic surfaces, such as flaps or slats, from the wing leading or trailing edges. In nature, one such device is a feathered structure on birds’ wings called the alula. The span of the alula is 5% to 20% of the wing and is attached to the first digit of the wing. The goal of the current study is to understand the aerodynamic effects of the alula on wing performance. A series of wind tunnel experiments are performed to quantify the effect of various alula deployment parameters on the aerodynamic performance of a cambered airfoil (S1223). A full wind tunnel span wing, with a single alula located at the wing mid-span is tested under uniform low-turbulence flow at three Reynolds numbers, Re = 85,000, 106,00 and 146,000. An experimental matrix is developed to find the range of effectiveness of an alula-type device. The alula relative angle of attack measured measured from the mean chord of the airfoil is varied to modulate tip-vortex strength, while the alula deflection is varied to modulate the distance of the tip vortex to the wing surface. Lift and drag forces were measured using a six axis force transducer. The lift and drag coefficients showed the greatest sensitivity to the the alula relative angle of attack, increasing the normalized lift coefficient by as much as 80%. Improvements in lift are strongly correlated to higher alula angle, with β = 0° – 5°, while reduction in the drag coefficient is observed with higher alula tip deflection ratios and lower β angles. Results show that, as the wing angle of attack and Reynolds number are increased, the overall lift co-efficient improvement is diminished while the reduction in drag coefficient is higher.


2013 ◽  
Vol 13 (06) ◽  
pp. 1340022 ◽  
Author(s):  
WEIJUN TIAN ◽  
FANGYUAN LIU ◽  
QIAN CONG ◽  
YURONG LIU ◽  
LUQUAN REN

This paper demonstrates the design of the airfoil of small wind turbines, the bionic airfoil was inspired by the morphology of the swallow's extended wing. The wind tunnel tests on the bionic and standard airfoils NACA4412 were conducted, and the aerodynamic performances of the airfoils were numerically investigated. The results show that the bionic airfoil has better aerodynamic performance, the lift coefficient and lift-drag ratio are larger than those of the NACA4412; with the angle of attack increases, both the bionic and standard airfoils stall, but the stall characteristics of the bionic airfoil are better.


Author(s):  
AA Mehraban ◽  
MH Djavareshkian

Sinusoidal leading-edge wings have attracted many considerations since they can delay the stall and enhance the maneuverability. The main contribution of this research study is to experimentally investigate effects of ground on aerodynamic performance of sinusoidal leading-edge wings. To this end, 6 tubercled wings with different amplitudes and wavelengths are fabricated and compared with the baseline wing which has smooth leading-edge. Proposed wings are tested in different distances from the ground in a wind tunnel lab for a wide range of angle of attack from 0° to 36° and low Reynolds number of 45,000. Results indicated that lift coefficient is improved when wings get close to the ground. Furthermore, increment of protuberance amplitude in the vicinity of the ground could efficiently prevent stalling particularly for shorter wavelength.


Sign in / Sign up

Export Citation Format

Share Document