scholarly journals Design and Simulation of Fiber Optic Cable using SolidWorks for Landslide Monitoring

2021 ◽  
Vol 2120 (1) ◽  
pp. 012038
Author(s):  
M A M Johnson ◽  
M H Kit ◽  
Y Hoon ◽  
S C Y Koay ◽  
G A Mahdiraji

Abstract This paper presents fiber optic cable design and simulation using SolidWorks software. SolidWorks software is an effective tool that helps design, analyze, and give a better understanding of fiber optic cable capabilities and performances. The model of the fiber optic cable was developed based on the existing fiber optic drop cable. It is composed of mainly four parts: Fiber optic member, fiber-reinforced plastic (FRP) strength member, low smoke zero halogen (LSZH) jacket, and steel wire. A static study was performed to determine the designed model’s ability to endure various levels of pressing and pulling forces. Simulation results showed that the cable can withstand a maximum of 195 N pulling force and 30000 N pressing force with a displacement of 1.78e+02 mm and 4.94e-01 mm respectively. The findings will contribute to the design of a new or novel fiber optic cable that is capable to monitor landslide activities with higher durability in future studies.

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6607
Author(s):  
Paweł Popielski ◽  
Bartosz Bednarz ◽  
Rafał Sieńko ◽  
Tomasz Howiacki ◽  
Łukasz Bednarski ◽  
...  

Diagnostics and assessment of the structural performance of collectors and tunnels require multi-criteria as well as comprehensive analyses for improving the safety based on acquired measurement data. This paper presents the basic goals for a structural health monitoring system designed based on distributed fiber optic sensors (DFOS). The issue of selecting appropriate sensors enabling correct strain transfer is discussed hereafter, indicating both limitations of layered cables and advantages of sensors with monolithic cross-section design in terms of reliable measurements. The sensor’s design determines the operation of the entire monitoring system and the usefulness of the acquired data for the engineering interpretation. The measurements and results obtained due to monolithic DFOS sensors are described hereafter on the example of real engineering structure—the Burakowski concrete collector in Warsaw during its strengthening with glass-fiber reinforced plastic (GRP) panels.


2020 ◽  
pp. 147592172093223
Author(s):  
Fengming Yu ◽  
Osamu Saito ◽  
Yoji Okabe

In this research, we attempt to establish a reliable structural health monitoring technique for composite materials by combining phase-shifted fiber-optic Bragg grating sensing with the laser ultrasonic visualization technology. In the first part of this article, a novel cross-adhesion configuration is designed to resolve the directionality problem of the phase-shifted fiber-optic Bragg grating ultrasonic sensing. In the adhesion configuration, Lamb waves are guided by an orthogonally bonded optical fiber from the adhesion point to the phase-shifted fiber-optic Bragg grating sensor. The analysis of the ultrasonic measurement results reveals that the proposed adhesion method enables us to use one sensor to receive Lamb waves in all in-plane directions with similar magnitude because two wave components propagating along with the two orthogonal directions are guided to the phase-shifted fiber-optic Bragg grating sensor and exhibit a linear superposition in the sensor. This simplified configuration gives our method an advantage over the existing approaches, such as the rosette configuration in which three or more phase-shifted fiber-optic Bragg grating sensors are required to relieve the sensing directionality. The phase-shifted fiber-optic Bragg grating ultrasonic sensor with the proposed adhesion configuration is then applied to visualize the propagation of ultrasonic waves in aluminum plates and carbon fiber–reinforced plastic laminates. Those verification experiments also show us that the new adhesion configuration is effective at protecting the phase-shifted fiber-optic Bragg grating ultrasonic measurement from the sensing directionality. Meanwhile, the broad bandwidth of the phase-shifted fiber-optic Bragg grating sensor enables us to visualize the propagation behavior of various Lamb wave modes over a broad frequency range. Finally, we also validate that the ultrasonic visualization technique merged with the phase-shifted fiber-optic Bragg grating ultrasonic sensing can be used to identify the hidden damage in the carbon fiber–reinforced plastic composite.


Sign in / Sign up

Export Citation Format

Share Document