scholarly journals Effect of Cellulose Nanofibers (CNF) as Reinforcement in Polyvinyl Alcohol/CNF Biocomposite

2021 ◽  
Vol 2129 (1) ◽  
pp. 012057
Author(s):  
Rathesh Kumaran Ulaganathan ◽  
Nur Aiman Mohamad Senusi ◽  
An’Amt Mohamed Noor ◽  
Wan Nazwanie Wan Abdullah ◽  
Mohamad Asyraf Mohd Amin ◽  
...  

Abstract This research was targeted to use the planetary ball milling method to extract cellulose nanofibers (CNFs) from commercial microcrystalline cellulose and also to utilize the obtained extracted cellulose nanofibers (CNFs) as reinforcement in polyvinyl alcohol (PVA) thin film. The effect of cellulose nanofibers (CNFs) on the mechanical and physical properties of polyvinyl alcohol (PVA) thin films was investigated. As a result of the study, we found that the thin film’s tensile strength is good, and the surface morphology of the CNFs suspension enhances the bonding between the PVA and the reinforcement. Tyndall effect was accurate with the visible light scattering through CNF suspension, and the CNF/PVA thin film exhibited transparent thin film. In contrast, the CNF/PVA composite’s mechanical and physical properties are good due to the excellent dispersion and absence of agglomeration of CNFs. The prepared PVA/CNF biocomposite would be a suitable candidate to be implemented as biodegradable food packaging material.

2017 ◽  
Vol 43 ◽  
pp. 216-222 ◽  
Author(s):  
Jen-Yi Huang ◽  
Janelle Limqueco ◽  
Yu Yuan Chieng ◽  
Xu Li ◽  
Weibiao Zhou

2010 ◽  
Vol 113-116 ◽  
pp. 2333-2336 ◽  
Author(s):  
Chun Wei Li ◽  
Xue Song Jiang ◽  
Qun Li Zhang ◽  
Shu Yan Xu ◽  
Gui Ying Wang

Food Packaging material requires an excellent barrier ability to humidity and oxygen.SiOx barrier thin film deposited on high polymer substrate can compare beauty with aluminum foil in the barrier quality,even more SiOx barrier thin film is obviously allowing microwave permeating directly and it also provide a chance for merchant to vision their production in shelf life.SiOx film as barrier packaging material is becoming a high light.The current status and research progress of new type high barrier thin film packaging material were overviewed and production technology was introduced. The various influencing factors were discussed, including background vacuum, reactive gases, and pretreatment of the substrate surface and properties.


2021 ◽  
Vol 71 (3) ◽  
pp. 275-282
Author(s):  
Yoichi Kojima ◽  
Tetsuya Makino ◽  
Kazuaki Ota ◽  
Kazushige Murayama ◽  
Hikaru Kobori ◽  
...  

Abstract The objective of this study was to investigate the lab-scale manufacturing process of insulation fiberboard (IFB) with cellulose nanofibers (CNFs) and evaluate the effects of CNFs on the mechanical and physical properties of the IFB. Because the fabricated IFBs with CNFs had a homogeneous appearance, it was assumed that CNFs can be easily dispersed within IFB by adding them during the mixing stage of the wet process of wood-based board production. The results for the IFBs with CNFs revealed that the density and bending properties increased, while the thickness decreased with an increase in the CNF addition ratio. Furthermore, after the water absorption test, the weight change rates of the IFBs decreased, and the thickness swelling rates increased. Although the size of the specimens was different from the size in JIS A 5905 (Japan Standards Association 2014), the modulus of rupture (MOR) values of IFBs with a target density more than or equal to 0.20 g/cm3 were higher than the value of A-class IFB in the standard for all CNF addition ratios. In addition, lower thermal conductivity may be realized under similar MOR values by adding CNFs to IFB. On the other hand, to produce CNF-reinforced IFBs with target density/thickness, it is necessary to develop a method for decreasing the cohesive force derived from CNF aggregation and the compressive force originating from the water surface tension caused by the high water retention of CNFs.


2021 ◽  
Vol 15 (2) ◽  
Author(s):  
V. Osyka ◽  
N. Merezhko ◽  
L. Koptjukh ◽  
V. Komakha ◽  
S. Kniaz

The paper presents the research results on the properties of the pulp coniferous and deciduous wood composition in its original state and paper made from it, proposes a mechanism to increase the waterfast and waterproof food packaging paper by surface treatment with a composition based on polyamidepichlorohydrin with polyvinyl alcohol and urea.  The study was conducted in order to ensure an increase in the consumer properties of packaging paper, since when packaging materials encounter food products, their structure can change under the influence of moisture, steam, and gas. Polyamidaminepichlorohydrin was used as the main component of the composition for paper processing, as functional additives: polyvinyl alcohol and urea. The above-mentioned starting materials are environmentally friendly, since foreign inclusions in food packaging materials would pose a serious danger to human health and life, as well as to the brand image of the product in which they would be detected. It was proved that high waterfastness and waterproofness, as well as the necessary level of barrier, protective and operational properties of packaging material for food products cannot always be obtained by introducing a significant amount of polyamidaminepichlorohydrin, so the paper investigated the mechanism of interacting cellulose fibers of paper with polyamidaminepichlorohydrin, and also proved the possibility of its use to obtain packaging paper with a given set of properties. It was found that the consumption of up to 4–6% polyamidaminepichlorohydrin provides the main increase in the mechanical strength of packaging paper, both in wet and dry conditions. The resulting waterfast and waterproof material can be used for food packaging.


2019 ◽  
Vol 27 (3) ◽  
pp. 489-497 ◽  
Author(s):  
Tamer Hamouda ◽  
Ahmed H. Hassanin ◽  
Naheed Saba ◽  
Mustafa Demirelli ◽  
Ali Kilic ◽  
...  

2019 ◽  
Vol 19 ◽  
pp. 16-23 ◽  
Author(s):  
Bruna Rage Baldone Lara ◽  
Ana Cristina Moreira Andrade Araújo ◽  
Marali Vilela Dias ◽  
Mario Guimarães ◽  
Taline Amorim Santos ◽  
...  

2021 ◽  
Vol 28 (11) ◽  
Author(s):  
Bao-Tran Tran Pham ◽  
Thuy-Hang Thi Duong ◽  
Thuong Thi Nguyen ◽  
Dai Van Nguyen ◽  
Chinh Dung Trinh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document