scholarly journals POLYAMIDAMINEPICHLOROHYDRIN APPLICATION FOR ECO-SAFE WATERFAST AND WATERPROOF FOOD PACKAGING PAPER PRODUCTION

2021 ◽  
Vol 15 (2) ◽  
Author(s):  
V. Osyka ◽  
N. Merezhko ◽  
L. Koptjukh ◽  
V. Komakha ◽  
S. Kniaz

The paper presents the research results on the properties of the pulp coniferous and deciduous wood composition in its original state and paper made from it, proposes a mechanism to increase the waterfast and waterproof food packaging paper by surface treatment with a composition based on polyamidepichlorohydrin with polyvinyl alcohol and urea.  The study was conducted in order to ensure an increase in the consumer properties of packaging paper, since when packaging materials encounter food products, their structure can change under the influence of moisture, steam, and gas. Polyamidaminepichlorohydrin was used as the main component of the composition for paper processing, as functional additives: polyvinyl alcohol and urea. The above-mentioned starting materials are environmentally friendly, since foreign inclusions in food packaging materials would pose a serious danger to human health and life, as well as to the brand image of the product in which they would be detected. It was proved that high waterfastness and waterproofness, as well as the necessary level of barrier, protective and operational properties of packaging material for food products cannot always be obtained by introducing a significant amount of polyamidaminepichlorohydrin, so the paper investigated the mechanism of interacting cellulose fibers of paper with polyamidaminepichlorohydrin, and also proved the possibility of its use to obtain packaging paper with a given set of properties. It was found that the consumption of up to 4–6% polyamidaminepichlorohydrin provides the main increase in the mechanical strength of packaging paper, both in wet and dry conditions. The resulting waterfast and waterproof material can be used for food packaging.

2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Nanou Peelman ◽  
Peter Ragaert ◽  
Elien Verguldt ◽  
Frank Devlieghere ◽  
Bruno De Meulenaer

AbstractThe research aim was to evaluate the applicability of biobased plastics for packing long shelf-life food products, both on laboratory and industrial scale. Therefore, the shelf-life (room temperature) of tortilla chips, dry biscuits and potato flakes packed under air or modified atmosphere (MAP) in xylan and cellulose-based packages was evaluated and compared with their shelf-life in reference (conventional) packaging materials. These tests were followed by packaging trials on industrial lines. Furthermore, overall migration studies and printability tests were performed. Most of the biobased packages showed sufficient barrier towards moisture and gasses to serve as a food packaging material and MAP packaging of long shelf-life food products is possible. But for very moisture-sensitive food products (e.g. dry biscuits), no suited packaging material was found. The quality of the tortilla chips and potato flakes could be guaranteed during their shelf-life, even if packaging materials with lower barrier properties were used. Still, brittleness and seal properties are critical for use on industrial scale (important for use on vertical flow packaging machines). Furthermore, the films were printable and migration tests showed compliance with legislation. This study shows promising results towards the industrial application of biobased packaging materials for long shelflife food products.


2017 ◽  
Vol 43 ◽  
pp. 216-222 ◽  
Author(s):  
Jen-Yi Huang ◽  
Janelle Limqueco ◽  
Yu Yuan Chieng ◽  
Xu Li ◽  
Weibiao Zhou

2011 ◽  
Vol 117-119 ◽  
pp. 1137-1141
Author(s):  
Ling Yu Wang ◽  
Jun Yan Huang ◽  
Li Hua Cui

In order to study the characteristics of a new kind of high-barrier and high-temperature sterilization and easy tear flexible plastic packaging materials applied in food packaging, the PET/AL/CPP was chosen as flexible plastic packaging material structure, different PET, CPP, alcohol inks, adhesives and other raw materials were selected for making a series of processing technology experiment and detection analysis. Then comparing the data obtained with the requirements, it was concluded that new flexible plastic packaging materials were extremely high resistance oxygen and resistance wet, high-temperature sterilization and good one-way easy tear, and etc.


2009 ◽  
Vol 100 (5) ◽  
pp. 1705-1710 ◽  
Author(s):  
Melissa A.L. Russo ◽  
Cathryn O’Sullivan ◽  
Beth Rounsefell ◽  
Peter J. Halley ◽  
Rowan Truss ◽  
...  

Author(s):  
S. Chaitanya Kumari ◽  
P. Naga Padma ◽  
K. Anuradha

The demand for increasing the shelf life of fresh food as well as the need for protecting the food against foodborne infections warrant the demand for increasing the shelf life of fresh food. The incorporation of nanoparticles into the packaging material can enhance the preservation of perishable foods. Silver nanoparticles (AgNPs), in particular, have antibacterial, anti-mold, anti-yeast, and anti-viral activities can be embedded into the biodegradable packaging materials for this purpose. This study focuses on antimicrobial packaging materials for food by mixing the extracts of different plants with silver nitrate and depositing this mixture as a layer on the blotting papers, which are thick sheets of paper made of cellulose. Because the blotting papers are highly absorbent and porous, silver nitrate solution along with the plant extracts can be easily applied and allowed for in situ synthesis of AgNPs. Subsequently, these papers were analyzed and characterized using scanning electron microscopy, transmission electron microscopy, atomic absorption spectroscopy, and energy dispersive X-ray analysis. The coated paper exhibited good antibacterial activity against Escherichia coli and Staphylococcus aureus. Furthermore, the coated paper when used as a packaging material for tomatoes and coriander leaf, the shelf life was extended to about 30 days and 15 days respectively. The prepared cost-effective silver packing material can be used in food packaging for various perishable foods.


2020 ◽  
Vol 21 (3) ◽  
pp. 698 ◽  
Author(s):  
Karolina Kraśniewska ◽  
Sabina Galus ◽  
Małgorzata Gniewosz

Packaging is an integral part of food products, allowing the preservation of their quality. It plays an important role, protecting the packed product from external conditions, maintaining food quality, and improving properties of the packaged food during storage. Nevertheless, commonly used packaging based on synthetic non-biodegradable polymers causes serious environmental pollution. Consequently, numerous recent studies have focused on the development of biodegradable packaging materials based on biopolymers. In addition, biopolymers may be classified as active packaging materials, since they have the ability to carry different active substances. This review presents the latest updates on the use of silver nanoparticles in packaging materials based on biopolymers. Silver nanoparticles have become an interesting component of biodegradable biopolymers, mainly due to their antimicrobial properties that allow the development of active food packaging materials to prolong the shelf life of food products. Furthermore, incorporation of silver nanoparticles into biopolymers may lead to the development of materials with improved physical-mechanical properties.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012057
Author(s):  
Rathesh Kumaran Ulaganathan ◽  
Nur Aiman Mohamad Senusi ◽  
An’Amt Mohamed Noor ◽  
Wan Nazwanie Wan Abdullah ◽  
Mohamad Asyraf Mohd Amin ◽  
...  

Abstract This research was targeted to use the planetary ball milling method to extract cellulose nanofibers (CNFs) from commercial microcrystalline cellulose and also to utilize the obtained extracted cellulose nanofibers (CNFs) as reinforcement in polyvinyl alcohol (PVA) thin film. The effect of cellulose nanofibers (CNFs) on the mechanical and physical properties of polyvinyl alcohol (PVA) thin films was investigated. As a result of the study, we found that the thin film’s tensile strength is good, and the surface morphology of the CNFs suspension enhances the bonding between the PVA and the reinforcement. Tyndall effect was accurate with the visible light scattering through CNF suspension, and the CNF/PVA thin film exhibited transparent thin film. In contrast, the CNF/PVA composite’s mechanical and physical properties are good due to the excellent dispersion and absence of agglomeration of CNFs. The prepared PVA/CNF biocomposite would be a suitable candidate to be implemented as biodegradable food packaging material.


2019 ◽  
Vol 84 (4) ◽  
pp. 59-62
Author(s):  
L.V. Hortseva ◽  
T.V. Shutova ◽  
O.S. Martynova ◽  
V.V. Zaval'na ◽  
T.P. Kostiuchenko

The article provides different types of modern food packaging materials, their advantages and possible risks during use. Issues of safe use and necessity for packaging material control have been also reviewed. Studies of some packaging products under the parameters of human health safety were described.


Author(s):  
OSYKA Victor ◽  
KOMAKHA Olha ◽  
KOMAKHA Volodymyr

Background. The dynamics of change of the complex of barrier and strength properties of moisture-resistant waterproof and moisture-resistant grease-proof paper packaging materials under the influence of temperature, humidity and mechanical factors is considered. The results of tests of the developed samples of paper packaging materials during exposure in the chamber of heat and moisture aging are given. Materials and methods. Paper packaging materials of grades B-55 and ZhV-55 were obtained by surface treatment with compositions using polyamide­amine­pichlorohydrin, polyvinyl alcohol, urea and glycerin.To test for heat resis­tance and moisture resistance, the PPM samples were placed in a temperature-humidity aging chamber and kept for 900 days at a given temperature (–18, –1, +6, +18, + 25 °C) and relative humidity (45, 65, 85 %), periodically (every 180 days) determining the change in their mechanical strength and barrier properties. The resis­tance of barrier properties to the effects of repetitive mechanical loads was determined by measuring the corresponding index at the site of multiple double bends. Results. During 360 days of exposure, the test samples practically do not lose resistance to the penetration of water (B-55) and fat (ZhV-55). After this exposure period, there is an intensification of degradation processes, which is more pronounced at temperatures below 0 °C. The maximum decrease (32 %) of fat permeability was recorded at a temperature of –18 °C after 900 days of ex­posure, while at temperatures above 0 °C, at this exposure, it is not more than 4 %. The strength of the packaging paper at temperatures of –1 °C and –18 °C during the test period in waterproof materials decreased by 6 % and 12 %, and in grea­seproof – 19 % and 29 %, respectively. The higher loss of strength of fat-impermeable PPM is due to the nature of the main component of the hydro­oleophobic composition – PVA, which has a higher brittleness temperature com­pared to PAAEX in the hydrophobic composition. After 150 cycles of alternating freezing and defrosting of the samples, the destructive force of the greaseproof material ZhV-55 is reduced to 57.5 N, and the waterproof B-55 – to 63 N. The destructive force for 30 repeated cycles of tem­perature change is 70.9 N and 67.3 N, in comparison with the initial values of 72.4 and 71.8 N for waterproof (B-55) and greaseproof (ZhV-55) wrapping paper, respectively. With 50 repeated double bends, which is close to the real conditions of use of packaging paper for its intended purpose, the water permeability of the sample B-55 is reduced by 8 %, and the fat permeability of the sample ZhV-55 – by 3 %. Conclusion. The established dependences allow us to state that the main factors determining the barrier and strength properties of the developed materials are: physicochemical nature of the main components of hydrophobic and hydro­oleophobic compositions, which determines the nature of their interaction with cellulose fiber; resistance of the structure of the material to the penetration of moisture and fat, as well as its ability to withstand various mechanical loads.


Author(s):  
Sudip Ray ◽  
Siew Young Quek ◽  
Allan Easteal ◽  
Xiao Dong Chen

With today's advancement in nanotechnology, Polymer-Clay Nanocomposite has emerged as a novel food packaging material due to its several benefits such as enhanced mechanical, thermal and barrier properties. This article discusses the potential use of these polymer composites as novel food packaging materials with emphasis on preparation, characterization, properties, recent developments and future prospects.


Sign in / Sign up

Export Citation Format

Share Document