scholarly journals First integrals of the system “platform with pendulum” and controlling of it

2021 ◽  
Vol 2131 (2) ◽  
pp. 022020
Author(s):  
A V Bratishchev

Abstract The problem of controlling the movement of a movable platform with a hinged fixed pendulum is considered. This pair is interpreted as a system of stationary connected points one of which moves freely in a horizontal plane. In the first problem, a control is synthesized that ensures the movement of the platform in a limited area under any initial conditions. In the second problem, a control is synthesized that stabilizes the oscillations of the pendulum in a given fixed vertical plane relative to the suspension point. For the problem of control synthesis, the first integrals of a free system are found and used in the article.

2021 ◽  
pp. 1-12
Author(s):  
Tomotaka Saruya ◽  
Shuji Fujita ◽  
Ryo Inoue

Abstract Polycrystalline ice is known to exhibit macroscopic anisotropy in relative permittivity (ɛ) depending on the crystal orientation fabric (COF). Using a new system designed to measure the tensorial components of ɛ, we investigated the dielectric anisotropy (Δɛ) of a deep ice core sample obtained from Dome Fuji, East Antarctica. This technique permits the continuous nondestructive assessment of the COF in thick ice sections. Measurements of vertical prism sections along the core showed that the Δɛ values in the vertical direction increased with increasing depth, supporting previous findings of c-axis clustering around the vertical direction. Analyses of horizontal disk sections demonstrated that the magnitude of Δɛ in the horizontal plane was 10–15% of that in the vertical plane. In addition, the directions of the principal axes of tensorial ɛ in the horizontal plane corresponded to the long or short axis of the elliptically elongated single-pole maximum COF. The data confirmed that Δɛ in the vertical and horizontal planes adequately indicated the preferred orientations of the c-axes, and that Δɛ can be considered to represent a direct substitute for the normalized COF eigenvalues. This new method could be extremely useful as a means of investigating continuous and depth-dependent variations in COF.


2019 ◽  
Vol 10 (1) ◽  
pp. 15-20
Author(s):  
József András ◽  
József Kovács ◽  
Endre András ◽  
Ildikó Kertész ◽  
Ovidiu Bogdan Tomus

Abstract The bucket wheel excavator (BWE) is a continuous working rock harvesting device which removes the rock by means of buckets armoured with teeth, mounted on the wheel and which transfers rock on a main hauling system (generally a belt conveyor). The wheel rotates in a vertical plane and swings in the horizontal plane and raised / descended in the vertical plane by a boom. In this paper we propose a graphical-numerical method in order to calculate the power and energy requirements of the main harvesting structure (the bucket wheel) of the BWE. This approach - based on virtual models of the main working units of bucket wheel excavators and their working processes - is more convenient than those based on analytical formulas and simplification hypotheses, and leads to improved operation, reduced energy consumption, increased productivity and optimal use of available actuating power.


1999 ◽  
Vol 202 (12) ◽  
pp. 1603-1623 ◽  
Author(s):  
D.L. Jindrich ◽  
R.J. Full

Remarkable similarities in the vertical plane of forward motion exist among diverse legged runners. The effect of differences in posture may be reflected instead in maneuverability occurring in the horizontal plane. The maneuver we selected was turning during rapid running by the cockroach Blaberus discoidalis, a sprawled-postured arthropod. Executing a turn successfully involves at least two requirements. The animal's mean heading (the direction of the mean velocity vector of the center of mass) must be deflected, and the animal's body must rotate to keep the body axis aligned with the heading. We used two-dimensional kinematics to estimate net forces and rotational torques, and a photoelastic technique to estimate single-leg ground-reaction forces during turning. Stride frequencies and duty factors did not differ among legs during turning. The inside legs ended their steps closer to the body than during straight-ahead running, suggesting that they contributed to turning the body. However, the inside legs did not contribute forces or torques to turning the body, but actively pushed against the turn. Legs farther from the center of rotation on the outside of the turn contributed the majority of force and torque impulse which caused the body to turn. The dynamics of turning could not be predicted from kinematic measurements alone. To interpret the single-leg forces observed during turning, we have developed a general model that relates leg force production and leg position to turning performance. The model predicts that all legs could turn the body. Front legs can contribute most effectively to turning by producing forces nearly perpendicular to the heading, whereas middle and hind legs must produce additional force parallel to the heading. The force production necessary to turn required only minor alterations in the force hexapods generate during dynamically stable, straight-ahead locomotion. A consideration of maneuverability in the horizontal plane revealed that a sprawled-postured, hexapodal body design may provide exceptional performance with simplified control.


2020 ◽  
Vol 8 (1) ◽  
pp. 106-115
Author(s):  
A. O. Lozynskyy ◽  
◽  
O. Yu. Lozynskyy ◽  
L. V. Kasha ◽  
◽  
...  

In the paper, the control system synthesis by means of the full state vector is considered when using fractional derivatives in the description of this system. To conduct research in the synthesized system with fractional derivatives in the Caputo--Fabrizio representation, a fundamental matrix of the system is formed, which also allows us to analyze the influence of initial conditions on the processes within the system. In particular, the finding of the fundamental matrix of the system in the case of multiple roots of a characteristic polynomial, which are obtained by transforming the synthesized system to the binomial form, is demonstrated. The influence of the fractional derivative index and the location of the roots of the characteristic polynomial transformed to the binomial form on the system operation is analyzed.


2020 ◽  
Vol 148 (7) ◽  
pp. 2645-2669
Author(s):  
Craig S. Schwartz ◽  
May Wong ◽  
Glen S. Romine ◽  
Ryan A. Sobash ◽  
Kathryn R. Fossell

Abstract Five sets of 48-h, 10-member, convection-allowing ensemble (CAE) forecasts with 3-km horizontal grid spacing were systematically evaluated over the conterminous United States with a focus on precipitation across 31 cases. The various CAEs solely differed by their initial condition perturbations (ICPs) and central initial states. CAEs initially centered about deterministic Global Forecast System (GFS) analyses were unequivocally better than those initially centered about ensemble mean analyses produced by a limited-area single-physics, single-dynamics 15-km continuously cycling ensemble Kalman filter (EnKF), strongly suggesting relative superiority of the GFS analyses. Additionally, CAEs with flow-dependent ICPs derived from either the EnKF or multimodel 3-h forecasts from the Short-Range Ensemble Forecast (SREF) system had higher fractions skill scores than CAEs with randomly generated mesoscale ICPs. Conversely, due to insufficient spread, CAEs with EnKF ICPs had worse reliability, discrimination, and dispersion than those with random and SREF ICPs. However, members in the CAE with SREF ICPs undesirably clustered by dynamic core represented in the ICPs, and CAEs with random ICPs had poor spinup characteristics. Collectively, these results indicate that continuously cycled EnKF mean analyses were suboptimal for CAE initialization purposes and suggest that further work to improve limited-area continuously cycling EnKFs over large regional domains is warranted. Additionally, the deleterious aspects of using both multimodel and random ICPs suggest efforts toward improving spread in CAEs with single-physics, single-dynamics, flow-dependent ICPs should continue.


1988 ◽  
Vol 32 (19) ◽  
pp. 1424-1428
Author(s):  
William P. Janson ◽  
Gloria L. Calhoun

Past studies involving oculomotor responses have typically been limited to refixations along the horizontal plane, small sample sizes, and little data pertaining to head movement. The study reported herein addresses these data voids by collecting both eye and head latency data for refixations in the horizontal and vertical planes. The subjects' task was to perform a central manual tracking task while periodically responding to a verbal command to classify a target on one of four peripheral monitors. Two targets were displayed along the horizontal plane and two along the vertical plane. Results from 620 trials indicated similar trends for the eye and head latency across all four monitor locations, suggesting no significant differences in eye or head latency as a function of target plane.


2020 ◽  
Vol 73 (8) ◽  
pp. 1162-1172 ◽  
Author(s):  
Carlotta Lega ◽  
Zaira Cattaneo ◽  
Noemi Ancona ◽  
Tomaso Vecchi ◽  
Luca Rinaldi

Humans show a tendency to represent pitch in a spatial format. A classical finding supporting this spatial representation is the Spatial–Musical Association of Response Codes (SMARC) effect, reflecting faster responses to low tones when pressing a left/bottom-side key and to high tones when pressing a right/top-side key. Despite available evidence suggesting that the horizontal and vertical SMARC effect may be differently modulated by instrumental expertise and musical timbre, no study has so far directly explored this hypothesis in a unified framework. Here, we investigated this possibility by comparing the performance of professional pianists, professional clarinettists and non-musicians in an implicit timbre judgement task, in both horizontal and vertical response settings. Results showed that instrumental expertise significantly modulates the SMARC effect: whereas in the vertical plane a comparable SMARC effect was observed in all groups, in the horizontal plane the SMARC effect was significantly modulated by the specific instrumental expertise, with pianists showing a stronger pitch–space association compared to clarinettists and non-musicians. Moreover, the influence of pitch along the horizontal dimension was stronger in those pianists who started the instrumental training at a younger age. Results also showed an influence of musical timbre in driving the horizontal, but not the vertical, SMARC effect, with only piano notes inducing a pitch–space association. Taken together, these findings suggest that sensorimotor experience due to instrumental training and musical timbre affect the mental representation of pitch on the horizontal space, whereas the one on the vertical space would be mainly independent from musical practice.


2015 ◽  
Vol 4 (2) ◽  
pp. 206
Author(s):  
Siham Sbii ◽  
Mimoun Zazoui ◽  
Noureddine Semane

<p>Satellites are uniquely capable of providing uniform data coverage globally. Motivated by such capability, this study builds on a previously described methodology that generates numerical weather prediction initial conditions from satellite total column ozone data. The methodology is based on two principal steps. Firstly, the studied linear regression between vertical (100hPa-500hPa) Mean Potential Vorticity (MPV) and MetOp/GOME2 total ozone data (O3) generates MPV pseudo-observations. Secondly, the 3D variational (3D-Var) assimilation method is designed to take into account MPV pseudo-observations in addition to conventional observations.</p><p>After a successful assimilation of MPV pseudo-observations using a 3D-Var approach within the Moroccan version of the ALADIN limited-area model, the present study aims to assess the dynamical behavior of the short-range forecast at upper levels during heavy precipitation events (HPEs). It is found that MPV assimilation offers the possibility to internally monitor the model upper-level dynamics in addition to the use of Water Vapor Satellite images.</p>


2011 ◽  
Vol 26 (6) ◽  
pp. 1045-1055 ◽  
Author(s):  
Piero Malguzzi ◽  
Andrea Buzzi ◽  
Oxana Drofa

Abstract Since August 2009, the GLOBO atmospheric general circulation model has been running experimentally at the Institute of Atmospheric Sciences and Climate (ISAC) of the National Council of Research of Italy. GLOBO is derived from the Bologna Limited Area Model (BOLAM), a gridpoint limited-area meteorological model that was developed at the same institute and that has been extended to the entire earth atmosphere. The main dynamical features and physical parameterizations of GLOBO are presented. Starting from initial conditions obtained from the analysis of the NCEP Global Forecast System (GFS) model valid at 0000 UTC, 6-day forecasts with average horizontal resolution of 32 km were performed on a daily basis and in real time. The assessment of the forecast skill during the 1.5-yr period included the calculation of the monthly averaged root-mean-square errors (model prediction versus gridded analyses) of geopotential height at 500 hPa and mean sea level pressure for the northern and southern extratropics, performed accordingly to WMO Commission for Basic Systems (CBS) standards. The verification results are compared with models from other global data processing and forecasting system centers, as are available in the literature. The GLOBO skill for medium-range forecasts turns out to be comparable to that of the above models. The lack of analyses based on model forecasts and data assimilation is likely to penalize the scores for shorter-term forecasts.


Sign in / Sign up

Export Citation Format

Share Document