scholarly journals Predictive management of enterprise power consumption based on the SINGULAR SPECTRUM ANALYSIS method using recurrent forecasting

2021 ◽  
Vol 2131 (3) ◽  
pp. 032113
Author(s):  
V Z Manusov ◽  
D V Antonenkov ◽  
D V Orlov ◽  
B V Palagushkin

Abstract Modern energy strategies aimed at the development of energy industry presuppose a significant change in the structure of process of formation, transmission, consumption of electrical energy and increasing energy efficiency by introducing modern technologies at all stages. The growth of capacities of industrial enterprises in the conditions of wholesale market of electrical energy and capacity in the modern energy system determines the need for development technologies of predictive control of power consumption process of these enterprises. The introduction of such technologies at the control rooms of the operational management of enterprises will allow to reduce the number of human errors, the number of emergency stops of technological process, increase the reliability of power system mode, rationally manage the process of power consumption of enterprises. In this regard, forecasting the load demand and consumption is an important stage in the functioning and planning of modern power systems. An accurate, correctly compiled forecast is the key to effective management of energy consumption process and reliable operation of the enterprise. Forecasting errors lead to imbalanced supply-demand, which negatively affects operating costs, reliability and efficiency.

The operation of high-power industrial electrical installations, particularly in metallurgy and the oil and gas industry, is associated with complex technological processes that require increased attention to the equipment used, as such equipment is used in complex and dangerous production conditions and in continuous operation facilities. High-voltage air and gas compressors are objects with increased electrical energy consumption and have significant starting currents. These circumstances affect both the shape of the supply voltage and the state of the energy system in general. Currently, the development of methods for limiting inrush currents is an urgent task for objects used in industrial enterprises. Introducing a compressor into the technological process is sometimes requires prior coordination of its start with the equipment in operation, especially that with a high power consumption. The paper studies the existing control system as well as ways to upgrade the system to improve its energy performance.


2019 ◽  
Vol 889 ◽  
pp. 526-532
Author(s):  
Thai Viet Dang ◽  
Si Thong Dinh ◽  
Xuan Toi Bui

Currently, the world has a lot of research and practical application of intelligent building systems integrated with intelligent power systems. Because Vietnam is a country with potential for solar energy, the integrator of solar energy is being strongly developed. However, the research result of the optimization of electrical energy used by the intelligent type solar integration is rare. This paper presents the design and structure of the module of intelligent control and monitoring via wireless network integrated with the automatic solar concentration system. The system allows easy connection and operation of all electrical power sources including the dispersal solar power to ensure the efficient and lower power consumption. In addition, the solar cell system is applied the Maximum Power Point Tracking technique (MPPT), which helps to stabilize and improve the power generation efficiency of the PV panels. The test results on the module showed absorption performance of automatic solar-cell flat plate systems is raised by 20-30% and power consumption in small households reduced approximately 30%.


2020 ◽  
Author(s):  
Leonardo Gorjão ◽  
Richard Jumar ◽  
Heiko Maass ◽  
Veit Hagenmeyer ◽  
G. Cigdem Yalcin ◽  
...  

Abstract The electrical energy system has attracted much attention from an increasingly diverse research community. Many theoretical predictions have been made, from scaling laws of fluctuations to propagation velocities of disturbances. However, to validate any theory, empirical data from large-scale power systems are necessary but are rarely shared openly. Here, we analyse an open data base of measurements of electric power grid frequencies across 17 locations in 12 synchronous areas on three continents. The power grid frequency is of particular interest, as it indicates the balance of supply and demand and carries information on deterministic, stochastic, and control influences. We perform a broad analysis of the recorded data, compare different synchronous areas and validate a previously conjectured scaling law. Furthermore, we show how fluctuations change from local independent oscillations to a homogeneous bulk behaviour. Overall, the presented open data base and analyses may constitute a step towards more shared, collaborative energy research.


2021 ◽  
Vol 1 (53) ◽  
pp. 43-50
Author(s):  
L. Mazurenko ◽  
◽  
O. Dzura ◽  
Ye. Shumskyi ◽  
◽  
...  

Purpose. The development of theory and research of autonomous DC power systems based on contactless electrical machines is an important element in ensuring the improvement of the reliability and energy efficiency of autonomous power supply of remote from centralized networks facilities, ship equipment, critical to power outages consumers. Originality. The use of induction generators with squirrel-cage rotor and an electronic converter in stator circuits in the design of autonomous DC power systems is advisable due to presence of a DC power output in these generators and the possibility of stabilizing the output voltage at variable speed. One of the scientific issues needed to be solved at creating induction generators-based DC power systems with inverter-assisted self-excitation of the generators is the determination of means and as well as development and verification of algorithms for regulating the generators load. Solving this issue requires the creation of appropriate simulation models. Methodology. In this work, a simulation dynamic model of an autonomous DC power system with two parallel operated induction generators with inverterassisted self-excitation and the six-step switching control algorithm has been developed. Results. A study of quasisteady-state and dynamic operating modes of the system was carried out. The duration of the initial excitation of the generators was determined for different values of the capacitance of the filter. Practical value. The results obtained showed the compliance of the parameters of electrical energy in the system with the standards established by the relevant regulatory documents and stable operation of the system with load changing from idle to rated. Further work is planned to focus on improving control algorithms for autonomous DC power systems with parallel operating induction generators and inverter-assisted self-excitation, studying the energy performance of such systems and developing recommendations for their design.


Author(s):  
Domenico Borello ◽  
Zaccaria Del Prete ◽  
Andrea Marchegiani ◽  
Franco Rispoli ◽  
Eileen Tortora

The present work deals with a high temperature proton exchange membrane (SPEEK-type) fuel cell (HT-PEMFC) energy system fuelled with hydrogen obtained by reforming of ammonia (NH3) and coupled with a bottoming Organic Rankine Cycle (ORC) energy system. This system was designed for distributed electric power generation, mainly for production of electric power systems with potential future applications in smart-grid. The use of ammonia as hydrogen rich gas source allows to avoid hydrogen tanking with metal hydrides, giving the opportunity to lighten and simplify the storage section of the system with respect to the pure hydrogen fed systems. The hybrid fuel cell/ORC configuration allows to increase the efficiency of standard power generation technologies. In other words, the ORC subset represents the most appropriate solution, in terms of sustainability, for extracting the excess heat produced during the H2 combustion maintaining the PEMFC working temperature at 120°C and for reducing the temperature of the exhausts. The objective of the work is to optimize the electric output of the system (PEMFC + ORC), thus improving the overall efficiency. To this end, a numerical model is implemented and tested. A validation of the numerical scheme is carried out comparing the prediction of the reforming phase with experimental results obtained by the authors. The thermal and electrical energy balance is also assessed. Furthermore, the operation conditions of the reformer are studied in detail to determine the settlements leading to a proper ammonia cracking to produce nitrogen and hydrogen. Furthermore, the calculations take into account also the auxiliary equipments such as pumps, compressors and heat exchangers.


Author(s):  
D F Opila ◽  
J D Stevens ◽  
A M Cramer

Both naval and commercial ships are incorporating new power and energy system technologies to improve fuel economy and performance while servicing high power pulsed loads. These assets can be best utilized with load demand forecasting and/or prediction, especially when considering limits on generator ramp rates, distribution lines, and energy storage capacity. Obtaining future load demand data and designing a controller to accommodate it can be challenging, but with potentially large payoff. However, this information is not useful in all cases. This paper develops a method to quantify the potential value of future information depending on the specific power system characteristics. This quantitative approach aids designers in deciding how and when to deploy future forecasting in controller design, and provides insight into the potential benefits of these more complex controllers. To quantify this trade off, two optimization-based control methods are developed. One uses only current information, while the other has an exact forecast of the future. As examples, the method is applied to a notional naval ship and drill platform service vessel with representative power and energy system architectures under indicative operational load demands. 


Author(s):  
Ansoumane Sakouvogui ◽  
Amadou Diarra ◽  
Faya Oulare ◽  
Elhadj Ousmane Camara ◽  
Saïdou Barry ◽  
...  

This present work was carried out at the Energy Department of the Higher Institute of Technology of Mamou and at the Applied Energy Education and Research Laboratory of the Faculty of Sciences of the Gamal Abdel Nasser University of Conakry, Guinea. Given the solar energy potential available to the continent, Hybrid Photovoltaic Power Systems and Generating Sets could constitute a suitable technological solution for the supply of electrical energy in isolated sites. This study led to the following results: average unfavorable solar irradiation in June (4.16 kWh/m2.d); the building's electrical load balance is 254760 Wh/d; the sizing of the photovoltaic field (the type of panels chosen Cip-60-270, the peak power of the PV field 59435.420 Wp, the number of panels 220 including 2 in series and 110 in parallel); the C4000-48 type inverter-chargers, 62 in number to achieve a power of 40 nickel-cadmium 1.2 V type accumulators in series in 140 batteries connected in parallel, the voltage drop in the cables is between 0.01 and 0.02. The electrical diagram of the installation is done.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Leonardo Rydin Gorjão ◽  
Richard Jumar ◽  
Heiko Maass ◽  
Veit Hagenmeyer ◽  
G. Cigdem Yalcin ◽  
...  

AbstractThe electrical energy system has attracted much attention from an increasingly diverse research community. Many theoretical predictions have been made, from scaling laws of fluctuations to propagation velocities of disturbances. However, to validate any theory, empirical data from large-scale power systems are necessary but are rarely shared openly. Here, we analyse an open database of measurements of electric power grid frequencies across 17 locations in 12 synchronous areas on three continents. The power grid frequency is of particular interest, as it indicates the balance of supply and demand and carries information on deterministic, stochastic, and control influences. We perform a broad analysis of the recorded data, compare different synchronous areas and validate a previously conjectured scaling law. Furthermore, we show how fluctuations change from local independent oscillations to a homogeneous bulk behaviour. Overall, the presented open database and analyses constitute a step towards more shared, collaborative energy research.


2021 ◽  
Vol 6 (4) ◽  
pp. 22-29
Author(s):  
Onyinyechi A. Uwaoma ◽  
Jonas N. Emechebe ◽  
Muhammed Uthman ◽  
Omotayo Oshiga ◽  
Samuel Olisa

This research paper focuses on modelling and simulation of 330 KV, 600 MW Shiroro Substation in the DIgSILENT Environment for the integration of Hybrid Solar PV – Hydro System to improve power supply in the Federal Capital Territory (FCT) of Abuja, Nigeria. A hybrid energy system is a system that combines multiple types of energy generations to satisfy the demand of the users effectively and efficiently. The Solar Photovoltaic (PV)/Hydro hybrid system consists of electrical energy generated from solar PV and hydro energy. Effect of environmental issues, reduction of fossil fuels in addition to its high cost have actively encouraged interest in great integration of renewable energy sources in power systems. This work capitalized on the possibilities of harnessing commercial solar energy and feeding it to the National grid through a nearby 330 KV substation at Shiroro Dam. The simulation is carried out in DIgSILENT (Power factory) environment. The Shiroro 16 kV, 330 kV, 600 MW Transmission Lines are modelled, and results of simulations of the five bus bars (Jebba, Shiroro, Gwagwalada, Katampe and Kaduna) voltages directly connected to Shiroro Network are: 331.8kV, 331.7 kV, 329.3 kV, 325.6 kV and 332.2 kV, respectively. All the values are within the Operational and Statutory Limits of the National Grid Code.


2020 ◽  
Vol 14 (1) ◽  
pp. 48-54
Author(s):  
D. Ostrenko ◽  

Emergency modes in electrical networks, arising for various reasons, lead to a break in the transmission of electrical energy on the way from the generating facility to the consumer. In most cases, such time breaks are unacceptable (the degree depends on the class of the consumer). Therefore, an effective solution is to both deal with the consequences, use emergency input of the reserve, and prevent these emergency situations by predicting events in the electric network. After analyzing the source [1], it was concluded that there are several methods for performing the forecast of emergency situations in electric networks. It can be: technical analysis, operational data processing (or online analytical processing), nonlinear regression methods. However, it is neural networks that have received the greatest application for solving these tasks. In this paper, we analyze existing neural networks used to predict processes in electrical systems, analyze the learning algorithm, and propose a new method for using neural networks to predict in electrical networks. Prognostication in electrical engineering plays a key role in shaping the balance of electricity in the grid, influencing the choice of mode parameters and estimated electrical loads. The balance of generation of electricity is the basis of technological stability of the energy system, its violation affects the quality of electricity (there are frequency and voltage jumps in the network), which reduces the efficiency of the equipment. Also, the correct forecast allows to ensure the optimal load distribution between the objects of the grid. According to the experience of [2], different methods are usually used for forecasting electricity consumption and building customer profiles, usually based on the analysis of the time dynamics of electricity consumption and its factors, the identification of statistical relationships between features and the construction of models.


Sign in / Sign up

Export Citation Format

Share Document