scholarly journals Mechanical model and numerical simulation of composite laminates subjected to low velocity impact

2021 ◽  
Vol 2133 (1) ◽  
pp. 012008
Author(s):  
Xiaozhou Feng ◽  
Xiufang Wang ◽  
Changwei Zhou ◽  
Jianmin Zhang

Abstract A mechanical model of laminated plates subjected to low velocity impact is proposed in this paper. The model studies the attenuation of impactor velocity affected by air resistance, intra-laminar damage initiation based strain, intra-laminar damage evolution based on damage parameters and delamination damage. Based on this mechanical model and ABAQUS platform, the experiment of Shi is numerically simulated. It is found that the predicted contact force, energy absorption and delamination damage of laminates are in good agreement with the experimental results, indicating that the established mechanical model can be used to predict the mechanical response and damage characteristics of composite laminates subjected to low velocity impact.

Author(s):  
Shivdayal Patel ◽  
Suhail Ahmad

The low velocity impact (LVI) result of laminated targets is an imperative study to evaluate its failure for applications to inconsequential structures. The work has extensive applications to off shore and naval industry. Safety and reliability assessment as per the international standards is one of the basic objectives of the study. LVI on composite plates is performed taking the material parameters and loading condition as random variables. Graphite fiber reinforced laminated plates are vulnerable to damage due to impact by foreign objects and in plane loading. In order to evaluate the safe load carrying capacity and the reliability under impact, dynamic analysis of composite plate subjected to LVI is carried out. Probabilistic finite element method (PFEM) is performed to determine the stochastic response. During impact, the in-plane damage modes such as matrix cracking, fiber failure and shear cracking are modeled using a failure criterion. The out of plane de-lamination is modeled using cohesive surfaces. The randomness associated with the system properties due to the inherent scatter in the geometric and material properties and input loads are modeled in a stochastic fashion. Random parameters represent various characteristics appearing in the performance function. The stochastic response and reliability forecast of the system is determined by Gaussian processes response surface method (GPRSM) and validity of method for the present problem is establish using Monte Carlo simulation (MCS) procedure. The safety level qualification is achieved in terms of reliability level targeted.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Mubarak Ali ◽  
S. C. Joshi ◽  
Mohamed Thariq Hameed Sultan

Fibre reinforced polymer laminated composites are susceptible to impact damage during manufacture, normal operation, maintenance, and/or other stages of their life cycle. Initiation and growth of such damage lead to dramatic loss in the structural integrity and strength of laminates. This damage is generally difficult to detect and repair. This makes it important to find a preventive solution. There has been abundance of research dealing with the impact damage evolution of composite laminates and methods to mitigate and alleviate the damage initiation and growth. This article presents a comprehensive review of different strategies dealing with development of new composite materials investigated by several research groups that can be used to mitigate the low velocity impact damage in laminated composites. Hybrid composites, composites with tough thermoplastic resins, modified matrices, surface modification of fibres, translaminar reinforcements, and interlaminar modifications such as interleaving, short fibre reinforcement, and particle based interlayer are discussed in this article. A critical evaluation of various techniques capable of enhancing impact performance of laminated composites and future directions in this research field are presented in this article.


2019 ◽  
Vol 26 (1) ◽  
pp. 1-11
Author(s):  
Jian He ◽  
Liang He ◽  
Bin Yang

AbstractThe effects of units, material parameters, and constitutive relationships on the dynamic mechanical response of composite laminates subjected to high- and low-velocity impacts were investigated. Additionally, the role of impact or shape, including hemispherical, flat, and conical, on the damage area of the adhesive layer and displacement of the center of the laminated plates was investigated. The results show that the energy absorption of composite laminates increases with impact velocity, and specific energy absorption changes with the density of the contact surface, which is affected by ply thickness. Moreover, the target energy absorption decreases with increasing layer angle. Under a low-velocity impact, the maximum contact force, damage area of the adhesive layer, and displacement of the center of the laminated plate increase as the impact energy increases, thus showing that impact energy is not directly related to contact duration and energy absorption of composite laminates. The results of different geometric shapes show that the damage area of the adhesive layer and the displacement of the center of the laminated plates are largest for a conical impactor and smallest for a flat impactor.


2012 ◽  
Vol 583 ◽  
pp. 179-182
Author(s):  
Hai Ming Hong ◽  
Ming Li ◽  
Jian Yu Zhang ◽  
Yi Ning Zhang

A group of low-velocity impact tests on CCF300/QY8911 composite laminates were implemented by the low-velocity drop hammer test machine. The dent depth and the internal damage pattern with corresponding impact energy were studied, the internal delamination damage state of laminates after impact were observed through thermal layer exposing tests, and the mechanism of low-velocity impact delamination damage were discussed. The results indicated that there existed a significant inflection point in the curve of impact energy verse dent depth of CCF300/QY8911 composite material, which was also the transition point of different damage patterns. When the impact energy was smaller than the inflection energy, the damage pattern consisted mainly of matrix flaws and delamination damages, but when the impact exceeded the inflection energy, delamination damage hardly expanded while the expansion of damage was mainly fiber break.


2012 ◽  
Vol 525-526 ◽  
pp. 393-396 ◽  
Author(s):  
Chun Hao Ma ◽  
Fei Xu

This paper proposed a composite damage model including the damage initiation and evolution based on strain to predict the composite intralaminar damage under impact loading. In the numerical simulation, the user material subroutine VUMAT and the cohesive-zone model are chosen to describe the composite damage model and the delamination of interfaces between different plies. ABAQUS software is used to simulate the low-velocity impact of different thickness composite laminates. It is found that the delamination shape and area, the contact force and the deflection of the impactor obtained by the numerically simulation agree well with the experimental results.


2020 ◽  
Vol 4 (4) ◽  
pp. 148
Author(s):  
Ahmed S. AlOmari ◽  
Khaled S. Al-Athel ◽  
Abul Fazal M. Arif ◽  
Faleh. A. Al-Sulaiman

One of the problems with composites is their weak impact damage resistance and post-impact mechanical properties. Composites are prone to delamination damage when impacted by low-speed projectiles because of the weak through-thickness strength. To combat the problem of delamination damage, composite parts are often over-designed with extra layers. However, this increases the cost, weight, and volume of the composite and, in some cases, may only provide moderate improvements to impact damage resistance. The selection of the optimal parameters for composite plates that give high impact resistance under low-velocity impact loads should consider several factors related to the properties of the materials as well as to how the composite product is manufactured. To obtain the desired impact resistance, it is essential to know the interrelationships between these parameters and the energy absorbed by the composite. Knowing which parameters affect the improvement of the composite impact resistance and which parameters give the most significant effect are the main issues in the composite industry. In this work, the impact response of composite laminates with various stacking sequences and resins was studied with the Instron 9250G drop-tower to determine the energy absorption. Three types of composites were used: carbon-fiber, glass-fiber, and mixed-fiber composite laminates. Also, these composites were characterized by different stacking sequences and resin types. The effect of several composite structural parameters on the absorbed energy of composite plates is studied. A finite element model was then used to find an optimized design with improved impact resistance based on the best attributes found from the experimental testing.


Sign in / Sign up

Export Citation Format

Share Document