scholarly journals Stability Analysis for Equivalent Circular Cylindrical Shell

2022 ◽  
Vol 2160 (1) ◽  
pp. 012037
Author(s):  
Yuying Chen ◽  
Jing Li ◽  
Wei Zhang ◽  
Bin He

Abstract Ring truss antenna is an ideal structure for large satellite antenna, which can be equivalent to circular cylindrical shell model. Based on the high-dimensional nonlinear dynamic vibration and bifurcation theory, we focus on the nonlinear dynamic behavior for breathing vibration system of ring truss antenna with internal resonance. The nonlinear transformation and Routh-Hurwitz criterion are used to analyze the stability of equilibrium point after disturbance, and the theoretical analysis is verified by numerical simulation. It provides a reference to ensure the stability and control parameters of satellite antenna in complex space environment.

1974 ◽  
Vol 96 (3) ◽  
pp. 820-826 ◽  
Author(s):  
D. T. Berry ◽  
G. B. Gilyard

Airframe/propulsion system interactions can strongly affect the stability and control of supersonic cruise aircraft. These interactions generate forces and moments similar in magnitude to those produced by the aerodynamic controls, and can cause significant changes in vehicle damping and static stability. This in turn can lead to large aircraft excursions or high pilot workload, or both. For optimum integration of an airframe and its jet propulsion system, these phenomena may have to be taken into account.


2019 ◽  
Vol 11 (4) ◽  
Author(s):  
Widanalage Dakshina ◽  
Thiwanka Fernando

This research carries out the advanced phase in correlation with the previous published design of KF Implemented Flying Wing. At the primary stage the basic design was considered under omission of non-static components and turbulent conditions. At this stage the simulations have taken a step ahead with improved flow conditions and advanced modeling of the design. As per the design aspects the engines, pylons, landing gears and shape improvements were done with solid modeling. Due to the computational limitations this was divided in to two phases as cruising conditions with non-static components and further studies to be carried out in Takeoff and Landing conditions with extended landing gears. Under the stability and control conditions a separate research is being carried out in achieving the optimum capability. Propfan engine selected for extreme condition evaluations. The implementations were made without disrupting the base design which was presented in phase one basic simulation carried out prior to this. The simulation results deemed to be promising for the first stage as well as the effect of new components. The secondary target areas are to be carried out in further ongoing research as well


2015 ◽  
Vol 734 ◽  
pp. 701-706
Author(s):  
Xian Bin Dai

as the basic method used to analyze the stability of nonlinear dynamic system, it is able to more deeply discuss the stability problems of power system in the vicinity of a critical point in comparison with traditional analysis method. Active power distribution network is a complicated nonlinear dynamic system. The change of voltage stability is the process to convert from stable status to bifurcation in essence. Taking 10-node active distribution system as an example, the author studies the influence of reactive power optimization on voltage stability based on bifurcation theory. The author explains the reactive optimization algorithm based on numerical simulation, namely, it is the decision - making algorithm in order to realize multiple purposes of having minimum power network loss, largest reactive power margin with stable operation of power distribution network and minimum voltage floating in system fluctuation, which is proved to be effective in elevating power distribution system stability, reducing power loss and improving voltage quality.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Mohamed Mostafa Y. B. Elshabasy ◽  
Yongki Yoon ◽  
Ashraf Omran

The main objective of the current investigation is to provide a simple procedure to select the controller gains for an aircraft with a largely wide complex flight envelope with different source of nonlinearities. The stability and control gains are optimally devised using genetic algorithm. Thus, the gains are tuned based on the information of a single designed mission. This mission is assigned to cover a wide range of the aircraft’s flight envelope. For more validation, the resultant controller gains were tested for many off-designed missions and different operating conditions such as mass and aerodynamic variations. The results show the capability of the proposed procedure to design a semiglobal robust stability and control augmentation system for a highly maneuverable aircraft such as F-16. Unlike the gain scheduling and other control design methodologies, the proposed technique provides a semi-global single set of gains for both aircraft stability and control augmentation systems. This reduces the implementation efforts. The proposed methodology is superior to the classical control method which rigorously requires the linearization of the nonlinear aircraft model of the investigated highly maneuverable aircraft and eliminating the sources of nonlinearities mentioned above.


2004 ◽  
Vol 14 (11) ◽  
pp. 3821-3846 ◽  
Author(s):  
GAMAL M. MAHMOUD ◽  
TASSOS BOUNTIS

Dynamical systems in the real domain are currently one of the most popular areas of scientific study. A wealth of new phenomena of bifurcations and chaos has been discovered concerning the dynamics of nonlinear systems in real phase space. There is, however, a wide variety of physical problems, which, from a mathematical point of view, can be more conveniently studied using complex variables. The main advantage of introducing complex variables is the reduction of phase space dimensions by a half. In this survey, we shall focus on such classes of autonomous, parametrically excited and modulated systems of complex nonlinear oscillators. We first describe appropriate perturbation approaches, which have been specially adapted to study periodic solutions, their stability and control. The stability analysis of these fundamental periodic solutions, though local by itself, can yield considerable information about more global properties of the dynamics, since it is in the vicinity of such solutions that the largest regions of regular or chaotic motion are observed, depending on whether the periodic solution is, respectively, stable or unstable. We then summarize some recent studies on fixed points, periodic solutions, strange attractors, chaotic behavior and the problem of chaos control in systems of complex oscillators. Some important applications in physics, mechanics and engineering are mentioned. The connection with a class of complex partial differential equations, which contains such famous examples, as the nonlinear Schrödinger and Ginzburg–Landau equations is also discussed. These complex equations play an important role in many branches of physics, e.g. fluids, superconductors, plasma physics, geophysical fluids, modulated optical waves and electromagnetic fields.


Sign in / Sign up

Export Citation Format

Share Document