scholarly journals Numerical simulation of flow in a high head Francis turbine with prediction of efficiency, rotor stator interaction and vortex structures in the draft tube

2015 ◽  
Vol 579 ◽  
pp. 012006 ◽  
Author(s):  
D Jošt ◽  
A Škerlavaj ◽  
M Morgut ◽  
P Mežnar ◽  
E Nobile
2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Chirag Trivedi

Dynamic stability of the high-head Francis turbines is one of the challenging problems. Unsteady rotor–stator interaction (RSI) develops dynamic stresses and leads to crack in the blades. In a high-head turbine, vaneless space is small and the amplitudes of RSI frequencies are very high. Credible estimation of the amplitudes is vital for the runner design. The current study is aimed to investigate the amplitudes of RSI frequencies considering a compressible flow. The hydro-acoustic phenomenon is dominating the turbines, and the compressibility effect should be accounted for accurate estimation of the pressure amplitudes. Unsteady pressure measurements were performed in the turbine during the best efficiency point (BEP) and part load (PL) operations. The pressure data were used to validate the numerical model. The compressible flow simulations showed 0.5–3% improvement in the time-averaged pressure and the amplitudes over incompressible flow. The maximum numerical errors in the vaneless space and runner were 6% and 10%, respectively. Numerical errors in the instantaneous pressure amplitudes at the vaneless space, runner, and draft tube were ±1.6%, ±0.9%, and ±1.8%, respectively. In the draft tube, the incompressible flow study showed the pressure amplitudes up to eight times smaller than those of the compressible. Unexpectedly, the strong effect of RSI was seen in the upper and lower labyrinth seals, which was absent for the incompressible flow.


2015 ◽  
Vol 111 ◽  
pp. 197-205 ◽  
Author(s):  
A.V. Minakov ◽  
D.V. Platonov ◽  
A.A. Dekterev ◽  
A.V. Sentyabov ◽  
A.V. Zakharov

2014 ◽  
Vol 136 (7) ◽  
Author(s):  
Kenji Shingai ◽  
Nobuaki Okamoto ◽  
Yuta Tamura ◽  
Kiyohito Tani

A series of numerical simulations for a Francis turbine were carried out to estimate the unsteady motion of the cavity in the draft tube of the turbine under a much larger flow rate condition than the swirl-free flow rate. The evaporation and condensation process was described by using a simplified Rayleigh–Plesset equation. A two-phase homogeneous model was adopted to calculate the mixture of gas and liquid phases. Instantaneous pressure monitored at a point on the draft tube formed long-period pulsations. Detailed analysis of the simulation results clarified the occurrence of a uniquely shaped cavity and the corresponding flow pattern in every period of the pressure pulsations. The existence of a uniquely shaped cavity was verified with an experimental approach. A simulation without rotor-stator interaction also obtained long-period pulsations after an extremely long computational time. This result shows that the rotor-stator interaction does not contribute to the excitation of long-period pulsations.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3868 ◽  
Author(s):  
Zheming Tong ◽  
Hao Liu ◽  
Jianfeng Ma ◽  
Shuiguang Tong ◽  
Ye Zhou ◽  
...  

A super high-head Francis turbine with a gross head of nearly 700 m was designed with computational fluid dynamics (CFD) simulation and laboratory tests. Reduced-scale (1:3.7) physical and numerical models of the real-scale prototype were created to investigate the hydraulic performance. According to the CFD analysis, a strong rotor–stator interaction (RSI) between guide vanes and runner blades is observed as a result of the high-speed tangential flow towards runner created by the super high water head as well as the small gaps between the radial blades. At the designed best efficiency point (BEP), there is no significant flow recirculation inside the flow passage and minor loss occurs at the trailing edge of the stay vanes and guide vanes. Maximum velocity is observed at runner inlets due to flow acceleration through the narrow passages between the guide vanes. The elbow-shaped draft tube gradually decreases the flow velocity to keep the kinetic energy loss at a minimum. The laboratory test was conducted on a reduced-scale physical model to investigate the pressure pulsations and guide vane torque (GVT) under variable-discharge configurations, which are key concerns in the design of a high head turbine. Pressure sensor networks were installed at the inlet pipe, vaneless space and draft tube, respectively. The most intense pressure variation occurs at the inlet pipe and elbow at 0.04–0.2 GVOBEP and 1.5–1.8 GVOBEP with a low frequency about 0.3 times of the runner frequency, while the vibration in vaneless zone performs stable with the blade passing frequency caused by RSI. The GVT shows a declining trend and then keeps stable as GVOs increases at synchronized condition. For the misaligned conditions, the torque of adjacent guide vanes differs a lot except at the synchronous angle and maximum absolute value at least doubles than the synchronized condition.


2011 ◽  
Vol 105-107 ◽  
pp. 52-55
Author(s):  
Si Qing Zhang ◽  
Chang Zhen Li ◽  
Li Xiang Zhang ◽  
Xiao Xu Zhang

The RNG turbulence model is used to carry out the 3D steady turbulent calculation on the runner and draft tube of the Francis turbine. And the prototype of the Francis turbine is HLA351. Under 8 typical operating conditions, numerical simulation on how the runner outlet urge the vortex rope in draft tube are accomplished in this paper, and the calculation models are long blade model and mixed blade model. The results show that the runner outlet of the mixed model can lead the vortex rope location to the downstream relatively, reduce the circumfluence and cushion area and the probability of the second-vortex. What’s more, the flow pattern in mixed model is superior to the long model and that benefits the operation stability and economy of the unit.


Sign in / Sign up

Export Citation Format

Share Document