POD analysis of turbulent swirling flow in draft tube of a high-head Francis turbine model at part load operation

Author(s):  
Sandeep Kumar ◽  
Subodh Khullar ◽  
Rahul Goyal ◽  
Michel J. Cervantes ◽  
Bhupendra Kumar Gandhi
2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Ri-kui Zhang ◽  
Feng Mao ◽  
Jie-Zhi Wu ◽  
Shi-Yi Chen ◽  
Yu-Lin Wu ◽  
...  

Under part-load conditions, a Francis turbine often suffers from very severe low-frequency and large-amplitude pressure fluctuation, which is caused by the unsteady motion of vortices (known as “vortex ropes”) in the draft tube. This paper first reports our numerical investigation of relevant complex flow phenomena in the entire draft tube, based on the Reynolds-averaged Navier–Stokes (RANS) equations. We then focus on the physical mechanisms underlying these complex and somewhat chaotic flow phenomena of the draft-tube flow under a part-load condition. The flow stability and robustness are our special concern, since they determine what kind of control methodology will be effective for eliminating or alleviating those adverse phenomena. Our main findings about the flow behavior in the three segments of the draft tube, i.e., the cone inlet, the elbow segment, and the outlet segment with three exits, are as follows. (1) In the cone segment, we reconfirmed a previous finding of our research group based on the turbine’s whole-flow RANS computation that the harmful vortex rope is an inevitable consequence of the global instability of the swirling flow. We further identified that this instability is caused crucially by the reversed axial flow at the inlet of the draft tube. (2) In the elbow segment, we found a reversed flow continued from the inlet cone, which evolves to slow and chaotic motion. There is also a fast forward stream driven by a localized favorable axial pressure gradient, which carries the whole mass flux downstream. The forward stream and reversed flow coexist side-by-side in the elbow, with a complex and unstable shear layer in between. (3) In the outlet segment with three exits, the forward stream always goes through a fixed exit, leaving the other two exits with a chaotic and low-speed fluid motion. Based on these findings, we propose a few control principles to suppress the reversed flow and to eliminate the harmful helical vortex ropes. Of the methods we tested numerically, a simple jet injection in the inlet is proven successful.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Rahul Goyal ◽  
Michel J. Cervantes ◽  
B. K. Gandhi

Francis turbine working at off-design operating condition experiences high swirling flow at the runner outlet. In the present study, a high head model Francis turbine was experimentally investigated during load rejection, i.e., best efficiency point (BEP) to part load (PL), to detect the physical mechanism that lies in the formation of vortex rope. For that, a complete measurement system of dynamic pressure, head, flow, guide vanes (GVs) angular position, and runner shaft torque was setup with corresponding sensors at selected locations of the turbine. The measurements were synchronized with the two-dimensional (2D) particle image velocimetry (PIV) measurements of the draft tube. The study comprised an efficiency measurement and maximum hydraulic efficiency of 92.4 ± 0.15% was observed at BEP condition of turbine. The severe pressure fluctuations corresponding to rotor–stator interaction (RSI), standing waves, and rotating vortex rope (RVR) have been observed in the draft tube and vaneless space of the turbine. Moreover, RVR in the draft tube has been decomposed into two different modes; rotating and plunging modes. The time of occurrence of both modes was investigated in pressure and velocity data and results showed that the plunging mode appears 0.8 s before the rotating mode. In the vaneless space, the plunging mode was captured before it appears in the draft tube. The physical mechanism behind the vortex rope formation was analyzed from the instantaneous PIV velocity vector field. The development of stagnation region at the draft tube center and high axial velocity gradients along the draft tube centerline could possibly cause the formation of vortex rope.


2018 ◽  
Vol 180 ◽  
pp. 02090 ◽  
Author(s):  
Pavel Rudolf ◽  
Jiří Litera ◽  
Germán Alejandro Ibarra Bolanos ◽  
David Štefan

Vortex rope, which induces substantial pressure pulsations, arises in the draft tube (diffuser) of Francis turbine for off-design operating conditions. Present paper focuses on mitigation of those pulsations using active water jet injection control. Several modifications of the original Susan-Resiga’s idea were proposed. All modifications are driven by manipulation of the shear layer region, which is believed to play important role in swirling flow instability. While some of the methods provide results close to the original one, none of them works in such a wide range. Series of numerical experiments support the idea that the necessary condition for vortex rope pulsation mitigation is increasing the fluid momentum along the draft tube axis.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3868 ◽  
Author(s):  
Zheming Tong ◽  
Hao Liu ◽  
Jianfeng Ma ◽  
Shuiguang Tong ◽  
Ye Zhou ◽  
...  

A super high-head Francis turbine with a gross head of nearly 700 m was designed with computational fluid dynamics (CFD) simulation and laboratory tests. Reduced-scale (1:3.7) physical and numerical models of the real-scale prototype were created to investigate the hydraulic performance. According to the CFD analysis, a strong rotor–stator interaction (RSI) between guide vanes and runner blades is observed as a result of the high-speed tangential flow towards runner created by the super high water head as well as the small gaps between the radial blades. At the designed best efficiency point (BEP), there is no significant flow recirculation inside the flow passage and minor loss occurs at the trailing edge of the stay vanes and guide vanes. Maximum velocity is observed at runner inlets due to flow acceleration through the narrow passages between the guide vanes. The elbow-shaped draft tube gradually decreases the flow velocity to keep the kinetic energy loss at a minimum. The laboratory test was conducted on a reduced-scale physical model to investigate the pressure pulsations and guide vane torque (GVT) under variable-discharge configurations, which are key concerns in the design of a high head turbine. Pressure sensor networks were installed at the inlet pipe, vaneless space and draft tube, respectively. The most intense pressure variation occurs at the inlet pipe and elbow at 0.04–0.2 GVOBEP and 1.5–1.8 GVOBEP with a low frequency about 0.3 times of the runner frequency, while the vibration in vaneless zone performs stable with the blade passing frequency caused by RSI. The GVT shows a declining trend and then keeps stable as GVOs increases at synchronized condition. For the misaligned conditions, the torque of adjacent guide vanes differs a lot except at the synchronous angle and maximum absolute value at least doubles than the synchronized condition.


Sign in / Sign up

Export Citation Format

Share Document