scholarly journals Blade Section Design of Marine Propellers with Minimum Cavitation Induced Pressure Fluctuations

2015 ◽  
Vol 656 ◽  
pp. 012078
Author(s):  
Zhibo Zeng ◽  
Gert Kuiper
2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Zhibo Zeng ◽  
Gert Kuiper

The paper presents a simplified prediction method to estimate cavitation-induced pressure fluctuations by marine propellers in a nonuniform wake field. It is realized by a very fast calculation of the cavitation volume variation. The sheet cavitation volume is represented by the cavitation area in a two-dimensional section, which is the vapor area inside the cavity contour. The variation of the cavitation area on a two-dimensional blade section has been simplified to a relation in quasi-steady condition with only a limited number of nondimensional parameters. This results in a fast method to predict the cavitation area of a blade section passing a wake peak, using a precalculated database. Application of this method to the prediction of cavitation-induced pressure fluctuations shows to be effective. This makes optimization of propeller sections for minimum cavitation-induced pressure fluctuations feasible.


2004 ◽  
Vol 48 (01) ◽  
pp. 15-30
Author(s):  
Hanseong Lee ◽  
Spyros A. Kinnas

Most marine propellers operate in nonaxisymmetric inflows, and thus their blades are often subject to an unsteady flow field. In recent years, due to increasing demands for faster and larger displacement ships, the presence of blade sheet and tip vortex cavitation has become very common. Developed tip vortex cavitation, which often appears together with blade sheet cavitation, is known to be one of the main sources of propeller-induced pressure fluctuations on the ship hull. The prediction of developed tip vortex cavity as well as blade sheet cavity is thus quite important in the assessment of the propeller performance and the corresponding pressure fluctuations on the ship hull. A boundary element method is employed to model the fully unsteady blade sheet (partial or supercavitating) and developed tip vortex cavitation on propeller blades. The extent and size of the cavity is determined by satisfying both the dynamic and the kinematic boundary conditions on the cavity surface. The numerical behavior of the method is investigated for a two-dimensional tip vortex cavity, a three-dimensional hydrofoil, and a marine propeller subjected to nonaxisymmetric inflow. Comparisons of numerical predictions with experimental measurements are presented.


1977 ◽  
Vol 99 (3) ◽  
pp. 561-566 ◽  
Author(s):  
M. W. McBride

The Mean Streamline Method of cascade blade section design developed by Wislicenus correlates the differences in the shape of the blade camber-line and the one-dimensional mean flow streamline. Recent effort has been directed toward the extension of this design method, to cover a wider range of loading distributions, including trailing edge loaded blades, and blades with higher than usual solidities (C/S). A computer analysis of many available blade shapes for subsonic compressors and pumps with differing loading distributions that have been tested experimentally was made. Relations between the deviation of the camber-line from the mean flow streamline as a function of the lift coefficient, solidity, a loading distribution parameter and blade stagger angle were found. Using these correlations, a computerized design method was developed which rapidly produces blade shapes with specified design characteristics. A radial equilibrium theory is utilized to compute the actual blade surface pressure distribution. When a blade is to be designed which is similar to existing designs, the method has proven very reliable.


1996 ◽  
Vol 118 (2) ◽  
pp. 364-369
Author(s):  
B. Bouras ◽  
F. Karagiannis ◽  
P. Chaviaropoulos ◽  
K. D. Papailiou

A blade design and optimization procedure is presented in this work, which is based on viscous flow considerations. This procedure concerns the design of optimum rotating arbitrary compressible high subsonic compressor and turbine blade shapes. It takes into account the effects of wall curvature and Coriolis force on turbulence, while it allows the variation of stream surface radius, along which the blade shape is placed, as well as streamtube width, with meridional distance. In order to establish the inverse part of the viscous optimization procedure, aspects such as laminar stability, transition, optimum deceleration and, more generally, the behaviour of compressible attached and separated shear layers are discussed. A plane on which all the general properties of the compressible laminar and turbulent shear layers appear, is constructed and the generation of optimum shear layers for the critical side of the blade shape is established. The complete optimization (design) procedure is then described and discussed, while various designs realized by the present procedure are presented at the end of this paper.


2005 ◽  
Vol 42 (03) ◽  
pp. 144-158
Author(s):  
Poul Andersen ◽  
Jürgen Friesch ◽  
Jens J. Kappel ◽  
Lars Lundegaard ◽  
Graham Patience

The principle of nonplanar lifting surfaces is applied to the design of modern aircraft wings to obtain better lift to drag ratios. Whereas a pronounced fin or winglet at the wingtip has been developed for aircraft, the application of the nonplanar principle to marine propellers, dealt with in this paper, has led to the KAPPEL propeller with blades curved toward the suction side integrating the fin or winglet into the propeller blade. The combined theoretical, experimental, and practical approach to develop and design marine propellers with nonplanar lifting surfaces has resulted in propellers with higher efficiency and lower levels of noise and vibration excitation compared to conventional state-of-the-art propellers designed for the same task. Conventional and KAPPEL propellers have been compared for a medium-sized containership and a product tanker. In total, nine KAPPEL propellers and two conventional propellers have been designed, and models of all propellers have been examined with respect to cavitation and efficiency in the open-water and behind conditions. Casting procedures, measurement procedures, and stress analysis methods for the unconventional geometry of the KAPPEL propeller have been developed. Furthermore, the KAPPEL propeller has been applied in full scale to the product carrier investigated. Sea trials with the conventional propeller and the KAPPEL propeller have been performed and have proved an efficiency gain of 4% in favor of the new propeller. The improved efficiency was obtained at lower propeller-induced pressure fluctuations. The correlation between the theoretical, experimental, and full-scale results is discussed.


1981 ◽  
Vol 25 (03) ◽  
pp. 191-200
Author(s):  
Young T. Shen ◽  
Richard Eppler

Based on wing section design theory and boundary-layer calculations, a series of symmetrical hydrofoil sections with improved hydrodynamic characteristics in terms of cavitation inception was successfully developed and presented in a previous paper. The design method is applied to develop a series of nonsymmetrical hydrofoil sections having a minimum pressure bucket whose depth and width are adapted to practical applications. Its depth, namely, the bottom value of — Cpmin, is made as low as necessary to achieve a certain critical cavitation speed; its width is made as large as possible to tolerate fluctuations of large angles of attack. Hydrodynamic properties of these newly developed hydrofoil sections are compared with those of NACA 16 and NACA 66 (MOD). The ability to achieve significant delay in cavitation inception makes the present design method useful when applying it to hydrofoils as well as to marine propellers.


1976 ◽  
Vol 20 (04) ◽  
pp. 215-223
Author(s):  
T. T. Huang ◽  
F. B. Peterson

Pertinent experimental results and theoretical prediction techniques are summarized and evaluated in terms of the influence of viscous effects on cavitation inception and the extent to which the boundary-layer properties complicate the correlation of model and full-scale cavitation inception. Consideration is given both to bodies having natural transition and bodies having laminar flow separation. The present approach assumes that cavitation inception is controlled by the pressure fluctuations in the region of natural transition or laminar separation superimposed upon the static pressure. In general, these pressure fluctuations occur very close to the minimum potential-flow pressure for full-scale bodies but occur farther aft of the minimum pressure for corresponding models evaluated at a lower Reynolds number. Predictions are in good agreement with results from numerous experiments on cavitating bodies which have either natural transition or laminar separation. Numerical examples demonstrate the order of magnitude of viscous effects on model/full-scale cavitation-inception scaling for a typical propeller blade section. Areas for additional cavitation research to strengthen the present approach are recommended.


Author(s):  
Bin Ji ◽  
Xianwu Luo ◽  
Xiaoxing Peng ◽  
Yulin Wu ◽  
Hongyuan Xu

The cavitating turbulent flows around two marine propellers, where one is a conventional propeller (CP) and the other is a highly skewed propeller (HSP), operating in non-uniform wake have been simulated by applying a mass transfer cavitation model based on Rayleigh-Plesset equation and k-omega SST turbulence model. From comparison of the numerical results with the experiment, it is noted that the unsteady cavitation patterns as well as the pressure oscillation amplitudes of the dominant components of marine propellers in non-uniform wake are reasonably predicted by present numerical methods. The results indicate that the effect of skew angle is very important on the cavitation characteristics as well as pressure fluctuations, and the amplitude of pressure fluctuation for HSP is reduced by 50–70% compared with that for CP. Therefore, the HSP propeller may help to avoid noise and vibration rather than the CP propeller. Further, the relation between hull pressures and changing cavitation patterns is verified based on CFD results, as the blades sweep through the high wake region. It is demonstrated that volumetric acceleration is the main reason for the pressure fluctuation, which agrees with the experiment by Duttweller and Brennen (2002).


Sign in / Sign up

Export Citation Format

Share Document