scholarly journals Correlation between radiographic analysis of alveolar bone density around dental implant and resonance frequency of dental implant

2017 ◽  
Vol 884 ◽  
pp. 012055
Author(s):  
S S Prawoko ◽  
L C Nelwan ◽  
R W Odang ◽  
L S Kusdhany
Author(s):  
Dennis Flanagan ◽  
Alessandro Fisher BS ◽  
Carmen Ciardiello ◽  
Vito Moreno ◽  
Alen Uvalic ◽  
...  

When planning an implant supported restoration the dentist is faced with the surgical and prosthetic technical issues as well as the patient’s expectations. Many patients wish an immediate solution to an edentulous condition. This is especially may be true in the esthetic zone. The extent of the zone is determined by the patient. The dentist may consider when it is feasible to load the supporting implants with definitive or provisional prosthetics. For the work herein, consideration of many parameters were theoretically assessed for inclusion: bone density, cortical thickness, seating torque, parafunction, bite load capacity, number of implants under load, implant/crown ratio, implant diameter and length. After assessment, the most influential parameters were selected. An iteration, using patient age, implant diameter, bite load capacity and cortical thickness, is now presented to aid the implant dentist in determining the feasibility for immediate functional loading of a just placed dental implant in a healed site. Extensive testing is required to develop this concept. According to this iteration, most immediate functional loaded implants would fail. A future refined and definitive formula may enable the clinician to safely immediately functional load an implant with a definitive prosthesis.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2757
Author(s):  
José Antonio Moreno-Rodríguez ◽  
Julia Guerrero-Gironés ◽  
Francisco Javier Rodríguez-Lozano ◽  
Miguel Ramón Pecci-Lloret

For the treatment of impacted maxillary canines, traction associated with a complete orthodontic treatment is the first choice in young patients. However, in adults, this treatment has a worse prognosis. The surgical extraction of the impacted tooth can result in a series of complications and a compromised alveolar bone integrity, which may lead to the requirement of a bone regeneration/grafting procedure to replace the canine with a dental implant. These case reports aimed to describe an alternative treatment procedure to the surgical extraction of impacted maxillary canines in adults. Following clinical and computerized tomography-scan (CT-Scan) examination, the possibility of maintaining the impacted canine in its position and replacing the temporary canine present in its place with a dental implant was planned. A short dental implant with an immediate provisional crown was placed, without contacting the impacted canine. At 3 months follow-up, a definitive metal-ceramic restoration was placed. Follow-up visits were performed periodically. The implant site showed a physiological soft tissue color and firmness, no marginal bone loss, no infection or inflammation, and an adequate aesthetic result in all follow-up visits. These results suggest that the treatment carried out is a valid option to rehabilitate with an osseointegrated short implant area where a canine is included, as long as there is a sufficient amount of the remaining bone.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 381
Author(s):  
Hyunmin Choi ◽  
Kyu-Hyung Park ◽  
Narae Jung ◽  
June-Sung Shim ◽  
Hong-Seok Moon ◽  
...  

The aim of this study was to investigate the behavior of dental-derived human mesenchymal stem cells (d-hMSCs) in response to differently surface-treated implants and to evaluate the effect of d-hMSCs on local osteogenesis around an implant in vivo. d-hMSCs derived from alveolar bone were established and cultured on machined, sandblasted and acid-etched (SLA)-treated titanium discs with and without osteogenic induction medium. Their morphological and osteogenic potential was assessed by scanning electron microscopy (SEM) and real-time polymerase chain reaction (RT-PCR) via mixing of 5 × 106 of d-hMSCs with 1 mL of Metrigel and 20 μL of gel-cell mixture, which was dispensed into the defect followed by the placement of customized mini-implants (machined, SLA-treated implants) in New Zealand white rabbits. Following healing periods of 2 weeks and 12 weeks, the obtained samples in each group were analyzed radiographically, histomorphometrically and immunohistochemically. The quantitative change in osteogenic differentiation of d-hMSCs was identified according to the type of surface treatment. Radiographic analysis revealed that an increase in new bone formation was statistically significant in the d-hMSCs group. Histomorphometric analysis was in accordance with radiographic analysis, showing the significantly increased new bone formation in the d-hMSCs group regardless of time of sacrifice. Human nuclei A was identified near the area where d-hMSCs were implanted but the level of expression was found to be decreased as time passed. Within the limitations of the present study, in this animal model, the transplantation of d-hMSCs enhanced the new bone formation around an implant and the survival and function of the stem cells was experimentally proven up to 12 weeks post-sacrifice.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Michele Kaplan ◽  
Zana Kalajzic ◽  
Thomas Choi ◽  
Imad Maleeh ◽  
Christopher L. Ricupero ◽  
...  

Abstract Background Orthodontic tooth movement (OTM) has been shown to induce osteocyte apoptosis in alveolar bone shortly after force application. However, how osteocyte apoptosis affects orthodontic tooth movement is unknown. The goal of this study was to assess the effect of inhibition of osteocyte apoptosis on osteoclastogenesis, changes in the alveolar bone density, and the magnitude of OTM using a bisphosphonate analog (IG9402), a drug that affects osteocyte and osteoblast apoptosis but does not affect osteoclasts. Material and methods Two sets of experiments were performed. Experiment 1 was used to specifically evaluate the effect of IG9402 on osteocyte apoptosis in the alveolar bone during 24 h of OTM. For this experiment, twelve mice were divided into two groups: group 1, saline administration + OTM24-h (n=6), and group 2, IG9402 administration + OTM24-h (n=6). The contralateral unloaded sides served as the control. The goal of experiment 2 was to evaluate the role of osteocyte apoptosis on OTM magnitude and osteoclastogenesis 10 days after OTM. Twenty mice were divided into 4 groups: group 1, saline administration without OTM (n=5); group 2, IG9402 administration without OTM (n=5); group 3, saline + OTM10-day (n=6); and group 4, IG9402 + OTM10-day (n=4). For both experiments, tooth movement was achieved using Ultra Light (25g) Sentalloy Closed Coil Springs attached between the first maxillary molar and the central incisor. Linear measurements of tooth movement and alveolar bone density (BVF) were assessed by MicroCT analysis. Cell death (or apoptosis) was assessed by terminal dUTP nick-end labeling (TUNEL) assay, while osteoclast and macrophage formation were assessed by tartrate-resistant acid phosphatase (TRAP) staining and F4/80+ immunostaining. Results We found that IG9402 significantly blocked osteocyte apoptosis in alveolar bone (AB) at 24 h of OTM. At 10 days, IG9402 prevented OTM-induced loss of alveolar bone density and changed the morphology and quality of osteoclasts and macrophages, but did not significantly affect the amount of tooth movement. Conclusion Our study demonstrates that osteocyte apoptosis may play a significant role in osteoclast and macrophage formation during OTM, but does not seem to play a role in the magnitude of orthodontic tooth movement.


2013 ◽  
Vol 70 (6) ◽  
pp. 586-594 ◽  
Author(s):  
Zoran Vlahovic ◽  
Branko Mihailovic ◽  
Zoran Lazic ◽  
Mileta Golubovic

Background/Aim. Flapless implant surgery has become very important issue during recent years, mostly thanks to computerization of dentistry and software planning of dental implants placements. The aim of this study was to compare flap and flapless surgical techniques for implant placement through radiographic and radiofrequency analyses. Methods. The experiment was made in five domestic pigs. Nine weeks following domestic pigs teeth extraction, implants were placed, on the right side using surgical technique flap, and flapless on the left side. Digital dental Xrays were applied to determine primary dental implant stability quality (ISQ). At certain intervals, not later than three months, the experimental animals were sacrificed, and just before it, control X-rays were applied to measure dental implants stability. Results. Radiographic analysis showed that peri-implant bone resorption in the first 4 weeks following placement implants with flap and flapless surgical techniques was negligible. After the 3 months, mean value of peri-implant bone resorption of the implants placed using flap technique was 1.86 mm, and of those placed using flapless technique was 1.13 mm. In relation to the primary dental implant stability in the first and second week there was an expected decrease in ISQ values, but it was less expressed in the dental implants placed using the flapless technique. In the third week the ISQ values were increased in the dental implants placed by using both techniques, but the increase in flapless implant placement was higher (7.4 ISQ) than in flap implant placement (1.5 ISQ). The upward trend continued in a 4- week period, and after 3 months the dental implant stability values in the implants placed using flap technique were higher than the primary stability for 7.1 ISQ, and in the implants placed using flapless technique were higher comparing to the primary stability for 10.1 ISQ units. Conclusion. Based on the results of radiographic and resonance frequency analyses it can be concluded that the flapless technique in surgical implants placemat, leads to better results.


Author(s):  
Reza Harirforoush ◽  
Siamak Arzanpour

This paper investigates primary stability of dental implant that indicates the process of bone-implant integration. This integration is known to happen at the boundary of the bone and dental implant contact surface. The resonance frequency of dental implant is used as the parameter for this investigation due to its high sensitivity to boundary condition variations. In this study, resonance frequency analysis (RFA) of the jaw-implant structure is carried out using finite element modeling. The FEM analyses are conducted in ANSYS modal analysis simulation environment. The FEM model of the structure includes titanium implant, Cancellous and cortical bone. Different implant-bone interface conditions are studied for this investigation. Various boundary conditions were studied to identify natural frequencies of jaw-implant structure. Our analysis shows that the resonance frequency of the implant increases during the healing period and reaches a plateau when the implant-bone interface was fully integrated. The results show that RFA could be suggested as a non-invasive, reliable and accurate diagnostic method for early assessment of the healing stages.


2014 ◽  
Vol 52 (3) ◽  
pp. 233
Author(s):  
Eun-Jin Park ◽  
David-Hyungjin Kim ◽  
Eun-Suk Kim

2019 ◽  
Vol 20 (12) ◽  
pp. 1430-1435
Author(s):  
Venith J Pulikkottil ◽  
Lakshmi Lakshmanan ◽  
Sanju T Varughese ◽  
Pavithra U Shamanna ◽  
Neeraj Goyal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document