scholarly journals Tuning sputtered gold thickness to enhance absorption and emission in core-shell type erbium doped upconversion nanoparticles

2018 ◽  
Vol 985 ◽  
pp. 012003
Author(s):  
R V Manurung ◽  
C T Wu ◽  
S Chattopadhyay
2017 ◽  
Vol 15 (0) ◽  
pp. 69-73 ◽  
Author(s):  
Kei Wakabayashi ◽  
Daichi Yamaura ◽  
Kazuki Ito ◽  
Naoya Kameda ◽  
Toshio Ogino

2021 ◽  
Vol 22 (3) ◽  
pp. 1068
Author(s):  
Katarzyna Dominika Kania ◽  
Waldemar Wagner ◽  
Łukasz Pułaski

Two immortalized brain microvascular endothelial cell lines (hCMEC/D3 and RBE4, of human and rat origin, respectively) were applied as an in vitro model of cellular elements of the blood–brain barrier in a nanotoxicological study. We evaluated the impact of CdSe/ZnS core-shell-type quantum dot nanoparticles on cellular homeostasis, using gold nanoparticles as a largely bioorthogonal control. While the investigated nanoparticles had surprisingly negligible acute cytotoxicity in the evaluated models, a multi-faceted study of barrier-related phenotypes and cell condition revealed a complex pattern of homeostasis disruption. Interestingly, some features of the paracellular barrier phenotype (transendothelial electrical resistance, tight junction protein gene expression) were improved by exposure to nanoparticles in a potential hormetic mechanism. However, mitochondrial potential and antioxidant defences largely collapsed under these conditions, paralleled by a strong pro-apoptotic shift in a significant proportion of cells (evidenced by apoptotic protein gene expression, chromosomal DNA fragmentation, and membrane phosphatidylserine exposure). Taken together, our results suggest a reactive oxygen species-mediated cellular mechanism of blood–brain barrier damage by quantum dots, which may be toxicologically significant in the face of increasing human exposure to this type of nanoparticles, both intended (in medical applications) and more often unintended (from consumer goods-derived environmental pollution).


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ho Chang ◽  
Chih-Hao Chen ◽  
Mu-Jung Kao ◽  
Hsin-Han Hsiao

This paper aims to develop photoanode material required by dye-sensitized solar cells. The material prepared is in the form of Ag@TiO2core-shell-type nanocomposites. This material is used to replace the titanium oxide powder commonly used in general DSSCs. The prepared Ag@TiO2core-shell-type nanocomposites are mixed with Degussa P25 TiO2in different proportions. Triton X-100 is added and polyethylene glycol (PEG) at 20 wt% is used as a polymer additive. This study tests the particle size and material properties of Ag@TiO2core-shell-type nanocomposites and measures the photoelectric conversion efficiency and IPCE of DSSCs. Experimental results show that the DSSC prepared by Ag@TiO2core-shell-type nanocomposites can achieve a photoelectric conversion efficiency of 3.67%. When Ag@TiO2core-shell-type nanocomposites are mixed with P25 nanoparticles in specific proportions, and when the thickness of the photoelectrode thin film is 28 μm, the photoelectric conversion efficiency can reach 6.06%, with a fill factor of 0.52, open-circuit voltage of 0.64V, and short-circuit density of 18.22 mAcm−2. Compared to the DSSC prepared by P25 TiO2only, the photoelectric conversion efficiency can be raised by 38% under the proposed approach.


RSC Advances ◽  
2016 ◽  
Vol 6 (59) ◽  
pp. 54241-54248 ◽  
Author(s):  
Yao-Wu Li ◽  
Liang Dong ◽  
Chen-Xi Huang ◽  
Yan-Chuan Guo ◽  
Xian-Zhu Yang ◽  
...  

Upconversion nanoparticles@mesoporous silica (mSiO2)/CdS nanostructures have been designed and fabricated for infrared light triggered photocatalytic degradation towards RhB dye.


2015 ◽  
Vol 738-739 ◽  
pp. 27-30
Author(s):  
Dong Dong Li ◽  
Qi Yue Shao ◽  
Yan Dong ◽  
Jian Qing Jiang

Hexagonal (β)-phase NaYF4:Yb3+, Er3+ upconversion nanoparticles (UCNPs) with and without an inert (undoped NaYF4) shell have been successfully synthesized and the effects of shell thickness on the upconversion luminescence (UCL) and temperature sensing properties were systematically investigated. It was found that the NaYF4 shell and its thickness do not affect the RHS values and thermal sensitivity, but can obviously improve the UCL intensity of NaYF4:Yb3+, Er3+ UCNPs. It implies that the core-shell structured NaYF4:Yb3+, Er3+@NaYF4 UCNPs with excellent UCL properties have great potential to be used as temperature sensing probes in biomedical fields, without considering the influences of the shell thickness on their temperature sensing properties.


2009 ◽  
Vol 631-632 ◽  
pp. 339-344
Author(s):  
Tsugumi Hayashi ◽  
Yohei Baba ◽  
Toshiharu Taga ◽  
Shun Yokoyama ◽  
Hiroaki Suzuki ◽  
...  

Objective of study was the development of core-shell type ZnS-CdS photocatalyst with the stratified morphology. To form the stratified morphology, condition of the precursor is extremely important. For this purpose, three types of precursors, thus core-shell type, egg-shell type and uniform type, was tried to synthesize by utilizing the results of the calculation. The size of the synthesized precursor particles was about 40-100 nm. Main phase of the particle was gradually changed from ZnO (pH8.0) to Cd(OH)2 (pH9.5). Detailed analysis of the synthesized precursor was clearly demonstrated that these have the crystalline structure and each metal element was co-existed in one particle. Therefore, it could be concluded that core-shell type or uniform type precursor was successfully synthesized. Core-shell type ZnS-CdS stratified photocatalyst could be successfully synthesized by sulfurization for 1h, and it shows the high photocatalytic activity under visible light irradiation.


2017 ◽  
Vol 62 (2) ◽  
pp. 1263-1266 ◽  
Author(s):  
M.-W. Lee ◽  
K.-H. Bae ◽  
S.-R. Lee ◽  
H.-J. Kim ◽  
T.-S. Jang

AbstractWe investigated the microstructural and magnetic property changes of DyCo, Cu + DyCo, and Al + DyCo diffusion-treated NdFeB sintered magnets. The coercivity of all diffusion treated magnet was increased at 880ºC of 1stpost annealing(PA), by 6.1 kOe in Cu and 7.0 kOe in Al mixed DyCo coated magnets, whereas this increment was found to be relatively low (3.9 kOe) in the magnet coated with DyCo only. The diffusivity and diffusion depth of Dy were increased in those magnets which were treated with Cu or Al mixed DyCo, mainly due to comparatively easy diffusion path provided by Cu and Al because of their solubility with Ndrich grain boundary phase. The formation of Cu/Al-rich grain boundary phase might have enhanced the diffusivity of Dy-atoms. Moreover, relatively a large number of Dy atoms reached into the magnet and mostly segregated at the interface of Nd2Fe14B and grain boundary phases covering Nd2Fe14B grains so that the core-shell type structures were developed. The formation of highly anisotropic (Nd, Dy)2Fe14B phase layer, which acted as the shell in the core-shell type structure so as to prevent the reverse domain movement, was the cause of enhancing the coercivity of diffusion treated NdFeB magnets. Segregation of cobalt in Nd-rich TJP followed by the formation of Co-rich phase was beneficial for the coercivity enhancement, resulting in the stabilization of the metastable c-Nd2O3phase.


2019 ◽  
Vol 37 (4) ◽  
pp. 339-344 ◽  
Author(s):  
Hanping Xiong ◽  
Qiuhong Min ◽  
Hongqing Ma ◽  
Lei Zhao ◽  
Wenbo Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document