Hydrogels with tunable modulus regulate chondrocyte microaggregates growth for cartilage repair

Author(s):  
Jing Chen ◽  
Peng An ◽  
Hua Zhang ◽  
Yansheng Zhang ◽  
Hua Wei ◽  
...  

Abstract Chondrocyte spheroids in 3D hydrogel are more beneficial to improve their survival and maintain chondrogenic phenotype comparing to dissociated chondrocytes. However, in-situ inducing cell into spheroids rather than encapsulating spheroids in a hydrogel remains a tremendous challenge because of the limitations of biochemical and viscoelastic controllability for hydrogel. Herein, a hydrogel consisting of photo-crosslinkable chitosan methacrylate (CHMA) and semi-interpenetrating polyvinyl alcohol (PVA) is developed as a cell-responsive matrix with controllable viscoelastic properties. The proposed CHMA-PVA precursor preferentially exhibits a weak gel-like state with a storage modulus of 16.9 Pa, loss modulus of 13.0 Pa and yielding stain of 1%, which could allow chondrocyte to vigorously move and assemble but hinder their precipitation before crosslinking. The chondrocytes could form microaggregates within 8 h in vitro and keep high viability. Moreover, subcutaneous implantation experiments demonstrate that the CHMA/PVA hydrogels are biocompatible and degrade within five weeks in vivo. The cell-free hydrogels are further placed in cylindrical cartilage defects in the rabbit femoral condyle and examined 8 weeks postoperatively. Gross, histological and immunohistochemical analyses reveal a significant acceleration for the cartilage regeneration. These findings suggest that this novel cell adhesion-responsive and histo-compatible hydrogel is promising for cartilage regeneration.

2013 ◽  
Vol 815 ◽  
pp. 345-349 ◽  
Author(s):  
Ching Wen Hsu ◽  
Ping Liu ◽  
Song Song Zhu ◽  
Feng Deng ◽  
Bi Zhang

Here we reported a combined technique for articular cartilage repair, consisting of bone arrow mesenchymal stem cells (BMMSCs) and poly (dl-lactide-co-glycolide-b-ethylene glycol-b-dl-lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymers carried with tissue growth factor (TGF-belat1). In the present study, BMMSCs seeded on PLGA-PEG-PLGA with were incubated in vitro, carried or not TGF-belta1, Then the effects of the composite on repair of cartilage defect were evaluated in rabbit knee joints in vivo. Full-thickness cartilage defects (diameter: 5 mm; depth: 3 mm) in the patellar groove were either left empty (n=18), implanted with BMMSCs/PLGA (n=18), TGF-belta1 modified BMMSCs/PLGA-PEG-PLGA. The defect area was examined grossly, histologically at 6, 24 weeks postoperatively. After implantation, the BMMSCs /PLGA-PEG-PLGA with TGF-belta1 group showed successful hyaline-like cartilage regeneration similar to normal cartilage, which was superior to the other groups using gross examination, qualitative and quantitative histology. These findings suggested that a combination of BMMSCs/PLGA-PEG-PLGA carried with tissue growth factor (TGF-belat1) may be an alternative treatment for large osteochondral defects in high loading sites.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yan Wang ◽  
Min Li ◽  
Pei Li ◽  
Haijun Teng ◽  
Dehong Fan ◽  
...  

Patients with bone and cartilage defects due to infection, tumors, and trauma are quite common. Repairing bone and cartilage defects is thus a major problem for clinicians. Autologous and artificial bone transplantations are associated with many challenges, such as limited materials and immune rejection. Bone and cartilage regeneration has become a popular research topic. Inorganic polyphosphate (polyP) is a widely occurring biopolymer with high-energy phosphoanhydride bonds that exists in organisms from bacteria to mammals. Much data indicate that polyP acts as a regulator of gene expression in bone and cartilage tissues and exerts morphogenetic effects on cells involved in bone and cartilage formation. Exposure of these cells to polyP leads to the increase of cytokines that promote the differentiation of mesenchymal stem cells into osteoblasts, accelerates the osteoblast mineralization process, and inhibits the differentiation of osteoclast precursors to functionally active osteoclasts. PolyP-based materials have been widely reported in in vivo and in vitro studies. This paper reviews the current cellular mechanisms and material applications of polyP in bone and cartilage regeneration.


2014 ◽  
Author(s):  
Ελευθέριος Μακρής

Ο αρθρικός και ο ινώδης χόνδρος έχουν περιορισμένη ικανότητα αναγέννησης μετά από τραυματικές κακώσεις και παθήσεις των αρθρώσεων. Δεδομένου του κριτικού ρόλου των ιστών αυτών στην προστασία των αρθρικών οστικών δομών και στην εξασφάλιση σταθερών λειτουργικών αρθρώσεων, η ανάπτυξη μεθόδων που προάγουν την αναγέννηση ή / και την επιδιορθώση των ιστών αυτών ειναι εξαιρετικά σημαντική. Η επιστήμη της ανάπτυξης μηχανικών ιστών παρέχει σήμερα εξαιρετικές προοπτικές στη θεραπεία των εκφυλισμένων και παθολογικών χόνδρινων ιστών. Και ενώ μεγάλη πρόοδος έχει επιτευχθεί πρόσφατα ως προς την ανάπτυξη νεοχόνδρινων ιστών με θλιπτικές μηχανικές ιδιότητες ανάλογες των φυσικών ιστών, ωστόσο οι ιδιότητες εφελκυσμού των νεοϊστών ειναι συγκριτικά υποδιαίστερες. Ως εκ τούτου, η ανάγκη ανάπτυξης νέων βελτιωμένων μεθόδων για να δημιουργία λειτουργικών νεοϊστών και την αποτελεσματική αντιμετώπιση των περίπου 46.4 εκατομμυρίων ασθένών που υποφέρουν σήμερα από αρθρίτιδα μόνο στις Ηνωμένες Πολιτείες, καθίσταται ιδιαίτερα επιτακτική.Δεδομένης της προόδου που έχει επιτευχθεί την τελευταία δεκαετία στην ανάπτυξη μηχανικών χόνδρινων ιστών, η παρούσα διδακτορική διατριβή έχει τρεις γενικούς στόχους: 1) τη διερεύνηση νέων μοριακών/βιολογικών μεθόδων αναγέννησης του αρθρικού χόνδρου σε in vitro και in vivo πειραματικά μοντέλα χόνδρινων βλαβών και οστεοαρθρίτιδας, 2) την ανάπτυξη ή/και βελτίωση μεθόδων αναγέννησης νεοχόνδρινών ιστών με ευρεία κλινική εφαρμογή, και 3) την ανάπτυξη μεθόδων βιολογικής και μηχανικής ωρίμανσης των νεοϊστών και μεθόδων ενσωμάτωσης τους με το φυσικό ιστό μετά απο μεταμόσχευση. Για την επίτευξη των στόχων αυτών, η παρούσα διατριβή περιγράφει την διερεύνηση νέων εξωγενών βιολογικών παραγόντων για την ανάπτυξη μηχανικών νεοϊστών με δομική οργάνωση ανάλογης των αντίστοιχων φυσικών ιστών. Αρχικά, μελετήθηκε η χρήση του χαλκού και της υδροξυλυσίνης, δύο σημαντικών μεσολαβητών της φυσιολογικής διαδικασίας ανάπτυξης διασταυρώμενων δέσμών κολλαγόνου, για την ενίσχυση της περιεκτικότητας των διασταυρώμενων δεσμών κολλαγόνου στους μηχανικούς ιστούς. Αναλόγως, σε μια διαφορετική μελέτη διερευνήθηκε η in vitro καλλιέργεια φυσικών μυοσκελετικών ιστών και μηχανικών νεοϊστών σε υποξικό περιβάλλον, με στόχο την ενίσχυση της περιεκτικότητάς τους σε διασταυρώμενους δεσμούς κολλαγόνου, και ως εκ τούτου, τη βελτίωση των λειτουργικών τους ιδιοτήτων. Λαμβάνοντας υπόψη την εκταινώς περιγεγραμένη στη βιβλιογραφία θετική συσχέτιση μεταξύ της περιεκτικότητας διασταυρούμενων δεσμών κολλαγόνου και εφελκυστικών μηχανικών ιδιοτήτων των νεοϊστών, μελετήθηκε μία νέα μέθοδος για την αύξηση αυτών των διασταυρούμενων δεσμών κολλαγόνου βασιζόμενη στην εξωγενή χορήγηση του ενζύμου λυσυλική οξειδάση (LOX) κατά τη καλλιέργεια των νεοϊστών, με απώτερο στόχο την περαιτέρω ενισχυση των λειτουργικών τους ιδιοτήτων.Άλλες μελέτες της παρούσας διατριβής επικεντρώνονται στην ανάπτυξη μεθόδων ενίσχυσης της περιεκτικότητας των μηχανικών ιστών σε κολλαγόνο, που όταν συνδυάζονται με τις τεχνικές ενίσχυσης των διασταυρούμενων δεσμών κολλαγόνου θα μπορούσαν να βελτιώσουν περαιτερώ την μηχανική ωρίμανση των νεοϊστών για την αποτελεσματική αποκατάσταση χόνδρινών ελλειμάτων σε πειραματικά μοντέλα αρθρικών παθήσεων. Ειδικότερα, δύο παράγοντες που είναι γνωστοί ρυθμιστές της ενδοκυτταρικής σηματοδότησης του Ca2+ (η διγοξίνη και η τριφωσφορική αδενοσίνη), εξετάστηκαν ως εναλλακτικές μέθοδοι για τη μηχανική βελτίωση των ιστών μέσω αύξησης της περιεκτικότητάς τους σε κολλαγόνο και σε διασταυρούμενους δεσμούς κολλαγόνου. Επιπλέον, ανάλογες μελέτες επικεντρώθηκαν στην βελτίωση μιας θεραπευτικής αγωγής που περιλαμβάνει το βιοφυσικό παράγοντα χονδροϊτινάση-ABC (C-ABC) και τον βιοχημικό παράγοντα αυξητικό παράγοντα μετασχηματισμού -β1 (ΤGF-β1) με στόχο πάλι την ενισχύση τών λειτουργικών ιδιοτήτων των νεοχόνδρινων ιστών. Μια διαφορετική μελέτη εξέτασε την ικανότητα της εμβιομηχανικής διέγερσης με τη μορφή παθητικής αξονικής θλιπτικής φόρτισης να συμβάλλει σε in vitro ανάπτυξη νεοχόνδρινών ιστών με προδιαγεγραμμένο σχήμα/αρχιτεκτονική. Τέλος, μια πρόσθετη μελέτη διερεύνησε την χρήση χονδροκυττάρων απο την ποδοκνημική άρθρωση για την κατασκευή νεοχόνδρινων μοσχευμάτων προοριζόμενων για την βλάβες της ποδοκνημικής άρθρωσης.Καταλεικτικά, η παρούσα διατριβή διερεύνησε τη δυνατότητα ενσωμάτωσης του νεοχόνδρινου με τον φυσικό ιστό μέσω της εξωγενούς χορήγησης του ενζύμου LOX. Μια αρχική μελέτη διερεύνησε τη δυνατότητα του LOX να προώθηση της ενσωμάτωσης μεταξύ του νεοχόνδρου και του φυσικού αρθρικού χόνδρου σε in vitro περιβάλλον καλλιέργειας των ιστών. Ελπιδοφόρα αποτελέσματα αυτής της μέλετης οδήγησαν σε συνδυασμό του ενζύμου LOX με τους παράγοντες C-ABC και ΤGF-β1 με στόχο την ταυτόχρονη ενίσχυση της ωρίμανσης του νεοχόνδρου και τη ενσωμάτωση του με τον φυσικό αρθρικό χόνδρο. Ειδικότερα, ο συνδυασμός των παραγόντων αυτών εφαρμόστηκε πρώτα σε ένα in vitro μοντέλο ενσωμάτωσης των δύο ιστών, και στη συνέχεια σε ένα πειραματικό ζωικό μοντέλο για τη διερεύνηση της ικανότητας του in νίνο περιβάλλοντος να ενισχύσει περαιτέρω της βιολογική αυτή διεργασία.Σε γενικές γραμμές, η σειρά των μελετών που περιγράφονται στην παρούσα διατριβή αντιπροσωπεύουν πρωτοπόρες και δυνητικώς κλινικά εφαρμόσιμες μοριακές μεθόδους για την ενίσχυση των λειτουργικών ιδιοτήτων ενός μεγάλου φάσματος κολλαγόνων ιστών και νεοϊστών. Συγκεκριμένα, ο χαλκός, η ενδογενής παραγώγη του ενζύμου LOX μέσω της καλλιεργειας των ιστών σε υποξίκό περιβάλλον, και η εξωγενή χορήγηση του LOX βελτιώνουν τις μηχανικές ιδιότητες των μηχανικών ιστών αναδεικνύοντας την ικανότητα στόχευσης της αύξησης των διαστραυρούμενων δεσμών κολλαγόνου για την ανάπτυξη βιομιμητικών και μηχανικά ισχυρών νεοχονδρινών ιστών. Εναλλακτικά, η διγοξίνη, η τριφωσφορική αδενοσίνη, ο C-ABC, ο ΤGF -β1, και η στατική εφαρμογή βάρους αποτελουν αποτελεσματικές μεθόδους για την ενίσχυση του κολλαγόνου και την αυξηση των διαστραυρούμενων δεσμών κολλαγόνου στους νεοϊστούς. Τέλος, η εξωγενής χορήγηση του LOX, μονομερώς ή σε συνδυασμό με τους παράγοντες C-ABC και ΤGF -β1, βρέθηκε να προάγει την in vitro και in vivo ωρίμανση των νεοϊστών και την ενσωμάτωση τους με το φυσικό ιστό, αντανακλώντας την πολλά υπόσχόμενη συνδιαστική χρήση των παραγόντων αυτών για την θεραπευτική αντιμετώπιση χόνδρινων βλαβών in νίνο. Συνολικά, οι μελέτες που περιγράφονται στην παρούσα διατριβή αποτελούν μια επισκόπηση διαφορετικών και πολλά υποσχόμενων νέων τεχνολογιών με στόχο 1) την ενίσχυση των μηχανικών ιδιοτήτων των φυσικών ιστών και νεοϊστών, και 2) την ενίσχυση των δυνατοτήτων τους να ενσωματώνονται in vitro, υπογραμμίζοντας τη δυνατότητα για εφαρμογή των τεχνολογιών αυτών στη ανάπτυξη κλινικά λειτουργικών νεοϊστών για την επιδιόρθωση και / ή αντικατάσταση των ιστών που έχουν καταστραφεί από τραυματισμό ή ασθένεια.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yunsheng Dong ◽  
Yufei Liu ◽  
Yuehua Chen ◽  
Xun Sun ◽  
Lin Zhang ◽  
...  

AbstractHydrogels have been extensively favored as drug and cell carriers for the repair of knee cartilage defects. Recruiting mesenchymal stem cells (MSCs) in situ to the defect region could reduce the risk of contamination during cell delivery, which is a highly promising strategy to enhance cartilage repair. Here, a cell-free cartilage tissue engineering (TE) system was developed by applying an injectable chitosan/silk fibroin hydrogel. The hydrogel system could release first stromal cell-derived factor-1 (SDF-1) and then kartogenin (KGN) in a unique sequential drug release mode, which could spatiotemporally promote the recruitment and chondrogenic differentiation of MSCs. This system showed good performance when formulated with SDF-1 (200 ng/mL) and PLGA microspheres loaded with KGN (10 μΜ). The results showed that the hydrogel had good injectability and a reticular porous structure. The microspheres were distributed uniformly in the hydrogel and permitted the sequential release of SDF-1 and KGN. The results of in vitro experiments showed that the hydrogel system had good cytocompatibility and promoted the migration and differentiation of MSCs into chondrocytes. In vivo experiments on articular cartilage defects in rabbits showed that the cell-free hydrogel system was beneficial for cartilage regeneration. Therefore, the composite hydrogel system shows potential for application in cell-free cartilage TE.


Author(s):  
Mengjie Hou ◽  
Baoshuai Bai ◽  
Baoxing Tian ◽  
Zheng Ci ◽  
Yu Liu ◽  
...  

Although cartilage regeneration technology has achieved clinical breakthroughs, whether auricular chondrocytes (AUCs) represent optimal seed cells to achieve stable cartilage regeneration is not clear. In this study, we systematically explore biological behaviors of human- and goat-derived AUCs during in vitro expansion as well as cartilage regeneration in vitro and in vivo. To eliminate material interference, a cell sheet model was used to evaluate the feasibility of dedifferentiated AUCs to re-differentiate and regenerate cartilage in vitro and in vivo. We found that the dedifferentiated AUCs could re-differentiate and regenerate cartilage sheets under the chondrogenic medium system, and the generated chondrocyte sheets gradually matured with increased in vitro culture time (2, 4, and 8 weeks). After the implantation of cartilage sheets with different in vitro culture times in nude mice, optimal neocartilage was formed in the group with 2 weeks in vitro cultivation. After in vivo implantation, ossification only occurred in the group with goat-regenerated cartilage sheet of 8 weeks in vitro cultivation. These results, which were confirmed in human and goat AUCs, suggest that AUCs are ideal seed cells for the clinical translation of cartilage regeneration under the appropriate culture system and culture condition.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 640 ◽  
Author(s):  
Serena Duchi ◽  
Stephanie Doyle ◽  
Timon Eekel ◽  
Cathal D. O’Connell ◽  
Cheryl Augustine ◽  
...  

Cartilage defects and diseases remain major clinical issues in orthopaedics. Biomanufacturing is now a tangible option for the delivery of bioscaffolds capable of regenerating the deficient cartilage tissue. However, several limitations of in vitro and experimental animal models pose serious challenges to the translation of preclinical findings into clinical practice. Ex vivo models are of great value for translating in vitro tissue engineered approaches into clinically relevant conditions. Our aim is to obtain a viable human osteochondral (OC) model to test hydrogel-based materials for cartilage repair. Here we describe a detailed step-by-step framework for the generation of human OC plugs, their culture in a perfusion device and the processing procedures for histological and advanced microscopy imaging. Our ex vivo OC model fulfils the following requirements: the model is metabolically stable for a relevant culture period of 4 weeks in a perfusion bioreactor, the processing procedures allowed for the analysis of 3 different tissues or materials (cartilage, bone and hydrogel) without compromising their integrity. We determined a protocol and the settings for a non-linear microscopy technique on label free sections. Furthermore, we established a clearing protocol to perform light sheet-based observations on the cartilage layer without the need for tedious and destructive histological procedures. Finally, we showed that our OC system is a clinically relevant in terms of cartilage regeneration potential. In conclusion, this OC model represents a valuable preclinical ex vivo tool for studying cartilage therapies, such as hydrogel-based bioscaffolds, and we envision it will reduce the number of animals needed for in vivo testing.


2019 ◽  
Vol 47 (10) ◽  
pp. 2338-2347 ◽  
Author(s):  
Shimpei Kondo ◽  
Yusuke Nakagawa ◽  
Mitsuru Mizuno ◽  
Kenta Katagiri ◽  
Kunikazu Tsuji ◽  
...  

Background: Previous work has demonstrated that patients with cartilage defects of the knee benefit from arthroscopic transplantation of autologous synovial mesenchymal stem cells (MSCs) in terms of magnetic resonance imaging (MRI), qualitative histologic findings, and Lysholm score. However, the effectiveness was limited by the number of cells obtained, so large-sized defects (>500 mm2) were not investigated. The use of MSC aggregates may enable treatment of larger defects by increasing the number of MSCs adhering to the cartilage defect. Purpose: To investigate whether transplantation of aggregates of autologous synovial MSCs with 2-step surgery could promote articular cartilage regeneration in microminipig osteochondral defects. Study Design: Controlled laboratory study. Methods: Synovial MSCs derived from a microminipig were examined for in vitro colony-forming and multidifferentiation abilities. An aggregate of 250,000 synovial MSCs was formed with hanging drop culture, and 16 aggregates (for each defect) were implanted on both osteochondral defects (6 × 6 × 1.5 mm) created in the medial femoral condyle and femoral groove (MSC group). The defects in the contralateral knee were left empty (control group). The knee joints were evaluated at 4 and 12 weeks by macroscopic findings and histology. MRI T1rho mapping images were acquired at 12 weeks. For cell tracking, synovial MSCs were labeled with ferucarbotran before aggregate formation and were observed with MRI at 1 week. Results: Synovial MSCs showed in vitro colony-forming and multidifferentiation abilities. Regenerative cartilage formation was significantly better in the MSC group than in the control group, as indicated by International Cartilage Repair Society score (macro), modified Wakitani score (histology), and T1rho mapping (biochemical MRI) in the medial condyle at 12 weeks. Implanted cells, labeled with ferucarbotran, were observed in the osteochondral defects at 1 week with MRI. No significant difference was noted in the modified Wakitani score at 4 weeks in the medial condyle and at 4 and 12 weeks in the femoral groove. Conclusion: Transplantation of autologous synovial MSC aggregates promoted articular cartilage regeneration at the medial femoral condyle at 12 weeks in microminipigs. Clinical Relevance: Aggregates of autologous synovial MSCs could expand the indications for cartilage repair with synovial MSCs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chijimatsu Ryota ◽  
Miwa Satoshi ◽  
Okamura Gensuke ◽  
Miyahara Junya ◽  
Tachibana Naohiro ◽  
...  

Abstract Background Somatic stem cell transplantation has been performed for cartilage injury, but the reparative mechanisms are still conflicting. The chondrogenic potential of stem cells are thought as promising features for cartilage therapy; however, the correlation between their potential for chondrogenesis in vitro and in vivo remains undefined. The purpose of this study was to investigate the intrinsic chondrogenic condition depends on cell types and explore an indicator to select useful stem cells for cartilage regeneration. Methods The chondrogenic potential of two different stem cell types derived from adipose tissue (ASCs) and synovium (SSCs) of mice and humans was assessed using bone morphogenic protein-2 (BMP2) and transforming growth factor-β1 (TGFβ1). Their in vivo chondrogenic potential was validated through transplantation into a mouse osteochondral defect model. Results All cell types showed apparent chondrogenesis under the combination of BMP2 and TGFβ1 in vitro, as assessed by the formation of proteoglycan- and type 2 collagen (COL2)-rich tissues. However, our results vastly differed with those observed following single stimulation among species and cell types; apparent chondrogenesis of mouse SSCs was observed with supplementation of BMP2 or TGFβ1, whereas chondrogenesis of mouse ASCs and human SSCs was observed with supplementation of BMP2 not TGFβ1. Human ASCs showed no obvious chondrogenesis following single stimulation. Mouse SSCs showed the formation of hyaline-like cartilage which had less fibrous components (COL1/3) with supplementation of TGFβ1. However, human cells developed COL1/3+ tissues with all treatments. Transcriptomic analysis for TGFβ receptors and ligands of cells prior to chondrogenic induction did not indicate their distinct reactivity to the TGFβ1 or BMP2. In the transplanted site in vivo, mouse SSCs formed hyaline-like cartilage (proteoglycan+/COL2+/COL1−/COL3−) but other cell types mainly formed COL1/3-positive fibrous tissues in line with in vitro reactivity to TGFβ1. Conclusion Optimal chondrogenic factors driving chondrogenesis from somatic stem cells are intrinsically distinct among cell types and species. Among them, the response to TGFβ1 may possibly represent the fate of stem cells when locally transplanted into cartilage defects.


2022 ◽  
Author(s):  
zhuoxuan jia ◽  
Bijun Kang ◽  
Yizuo Cai ◽  
Chingyu Chen ◽  
Zheyuan Yu ◽  
...  

Abstract Background: The prevalence of osteoarthritis (OA) is increasing, yet clinically effective and economical treatments are unavailable. We have previously proposed a cell-free fat extract (CEFFE) containing multiple cytokines, which possessed anti-apoptotic, anti-oxidative, and proliferation promotion functions, as a “cell-free” strategy. In this study, we aimed to evaluate the therapeutic effect of CEFFE in vivo and in vitro . Methods: In vivo study, sodium iodoacetate-induced OA rats were treated with CEFFE by intra-articular injections for 8 weeks. Behavioral experiments were performed every two weeks. Histological analyses, anti-type II collagen, and toluidine staining provided structural evaluation. Macrophage infiltration was assessed by anti-CD68 and anti-CD206 staining. In vitro study, the effect of CEFFE on macrophage polarization and secretory factors was evaluated by flow cytometry, immunofluorescence, and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The effect of CEFFE on cartilage regeneration was accessed by cell counting kit-8 assay and qRT-PCR. The generation of reactive oxygen species (ROS) and levels of ROS-related enzymes were investigated by qRT-PCR and western blotting. Results: In rat models with sodium iodoacetate (MIA)-induced OA, CEFFE increased claw retraction pressure while decreasing bipedal pressure in a dose-depend manner. Moreover, CEFFE promoted cartilage structure restoration and increased the proportion of CD206 + macrophages in the synovium. In vitro , CEFFE decreased the proportion of CD86 + cells and reduced the expression of pro-inflammatory factors in LPS + IFN-γ induced Raw 264.7. In addition, CEFFE decreased the expression of interleukin-6 and ADAMTs-5 and promoted the expression of SOX-9 in mouse primary chondrocytes. Besides, CEFFE reduced the intracellular levels of reactive oxygen species in both in vitro models through regulating ROS-related enzymes. Conclusions: CEFFE inhibits the progression of OA by promoting cartilage regeneration and limiting low-grade joint inflammation.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Weimin Guo ◽  
Xifu Zheng ◽  
Weiguo Zhang ◽  
Mingxue Chen ◽  
Zhenyong Wang ◽  
...  

Articular cartilage lacks a blood supply and nerves. Hence, articular cartilage regeneration remains a major challenge in orthopedics. Decellularized extracellular matrix- (ECM-) based strategies have recently received particular attention. The structure of native cartilage exhibits complex zonal heterogeneity. Specifically, the development of a tissue-engineered scaffold mimicking the aligned structure of native cartilage would be of great utility in terms of cartilage regeneration. Previously, we fabricated oriented PLGA/ACECM (natural, nanofibrous, articular cartilage ECM) composite scaffolds. In vitro, we found that the scaffolds not only guided seeded cells to proliferate in an aligned manner but also exhibited high biomechanical strength. To detect whether oriented cartilage regeneration was possible in vivo, we used mesenchymal stem cell (MSC)/scaffold constructs to repair cartilage defects. The results showed that cartilage defects could be completely regenerated. Histologically, these became filled with hyaline cartilage and subchondral bone. Moreover, the aligned structure of cartilage was regenerated and was similar to that of native tissue. In conclusion, the MSC/scaffold constructs enhanced the structure-specific regeneration of hyaline cartilage in a rabbit model and may be a promising treatment strategy for the repair of human cartilage defects.


Sign in / Sign up

Export Citation Format

Share Document