scholarly journals On the effect of spatial dispersion of wind power plants on the wind energy capacity credit in Greece

2008 ◽  
Vol 3 (1) ◽  
pp. 015003 ◽  
Author(s):  
George Caralis ◽  
Yiannis Perivolaris ◽  
Konstantinos Rados ◽  
Arthouros Zervos
Author(s):  
S. Surender Reddy ◽  
Kishore Prathipati ◽  
Young Hwan Lho

AbstractThis paper proposes a methodology to improve the transient stability (TS) of a system with wind energy generators. Induction machines are used widely as generators in the wind power plants. As these induction machines also have the stability problem like other synchronous machines, it is very important to analyze the TS of a system including the wind power plants. In this paper, the simulations and analysis of TS of power system including the induction generators during the short circuit fault conditions are carried out. The effect of pitch angle control on the stability of power system is analyzed. From the simulation results, it can be observed that the pitch control system which prevents the excess wind speed has the significant effect on the TS enhancement of the system. It can also be observed that the controller gain and time constant values have considerable effect on the pitch control system.


2019 ◽  
Vol 18 (4) ◽  
pp. 821-845
Author(s):  
Ali Mostafaeipour ◽  
Sajjad Sadeghi ◽  
Mehdi Jahangiri ◽  
Omid Nematollahi ◽  
Ali Rezaeian Sabbagh

Purpose Wind as a major source of renewable energy has received tremendous attentions due to its unique features to reduce carbon emission and also to keep the environment safe. Nevertheless, to use wind energy properly, the environmental circumstances and geographical location related to wind intensity should be considered as a priority. Different factors may affect the selection of a suitable location for developments of wind power plants; thus, these factors should be considered concurrently to identify the optimum location of wind plants. Design/methodology/approach In this study, first, basic data envelopment analysis (DEA) was used, then dual DEA was used and, finally, Anderson Petersen (AP) model of dual DEA was selected to prioritize cities or decision-making units (DMUs). Numerical Taxonomy (NT) method was also used to assess the validity of AP dual model in DEA. The prescribed approach was applied for five cities in East Azerbaijan province of Iran. Findings The results indicate that wind power as a renewable energy can be harnessed in few cities, and the ranking by DEA illustrated that the city of Tabriz is the first priority. Practical implications Low environmental degradation effects in comparison to other methods and the ability to utilization at a widespread level include the benefits of using wind energy in the generation of electricity. In this regard, the study of relevant potentials and finding suitable locations for the deployment of wind energy utilization equipment are essential. Using DEA method helps us to choose optimal locations according to different criteria. Social implications Wind energy is justifiable in reducing social costs in comparison with fossil fuel plants, which includes negative effects, and its electricity can be used as a sustainable energy in the country's economic, social and cultural development. Originality/value For identifying the most proper location for development of wind power plants in Iran, DEA is applied for the first time to prioritize the suitable locations for installations of wind turbines among five different cities in the East Azerbaijan region. A number of crucial factors including land price, distance to power, rate of natural hazards, wind speed and topography are considered for location optimization of wind turbines for the first time. Also, to validate the results of DEA method, NT method is used to assess the validity of AP dual model in DEA.


Author(s):  
S. K. Sheryazov ◽  
S. S. Issenov ◽  
R. M. Iskakov ◽  
A. B. Kaidar

PURPOSE. Conduct a detailed analysis of existing wind turbines. Analyze the role, place and features of the functioning of wind power plants. Provide various options for generators and schemes for converting wind energy into electricity. Provide recommendations for improving the reliability of wind turbines in smart grids.METHODS. The article was prepared using analytical methods, statistical, theoretical, factorial and technical methods.RESULTS. A fixed speed asynchronous generator used in a wind power conversion system (WECS) without a power converter interface draws a significant portion of the reactive power from the grid. This configuration features simple, reliable operation. Wind turbine asynchronous generator with dual power supply. can improve overall power conversion efficiency by performing maximum power point tracking (MPPT), and an increase in speed of about 30% can improve dynamic performance and increase resilience to system disturbances that are not available for turbine types 1 and 2. The use of full-scale 100% power converters will significantly increase the productivity of SPEV wind energy conversion systems, but will slightly increase the cost of the power converter, up to 7% - 12% of the total equipment cost. By using a large number of pole pairs for all types of permanent magnet synchronous generator (PMG), the turbine gearbox can be removed. This type of wind energy conversion system is more resilient to grid disruptions compared to type 1, 2 and 3 wind systems. The review shows that types 3 and 4 technologies are used to most efficiently sell and recycle wind turbines in electricity markets.CONCLUSION. The article analyzes the features of the functioning of wind power plants operating on the grid. Various options for generators and schemes for converting wind energy into electricity are presented. A detailed analysis of existing wind turbines is provided. Recommendations are given for improving the reliability and efficiency of wind power plants in smart grids.


2019 ◽  
Author(s):  
Mike Optis ◽  
Jordan Perr-Sauer ◽  
Caleb Philips ◽  
Anna E. Craig ◽  
Joseph C. Y. Lee ◽  
...  

Abstract. As global wind capacity continues to grow, the need for accurate operational analyses of a rapidly growing fleet of wind power plants has increased in proportion. The wind energy industry at present, however, is not ideally positioned to address this need. First, there is a lack of best practices and limited published standards for performing operational analyses. Second, operational data and methods are typically proprietary and not shared among the wind energy community. Consequently, there is considerable duplication of effort in developing methods as well as uncertainty in the calculated metrics. To address these problems, the National Renewable Energy Laboratory has publicly released OpenOA, an open-source code base for performing operational analyses on wind plant data. The intent of OpenOA is to provide a framework in which best practices can be developed, refined, and disseminated. Ultimately, such collaboration is expected to lead to a working example (i.e. reference implementation) of methods from which a published standard may develop. This article provides an overview of OpenOA, highlighting its release as a public repository, modular software architecture, current functionality, and planned functionality in subsequent releases. It is our goal for OpenOA to evolve into an indispensable tool for performing operational analyses that is used and supported by a large community of wind energy experts.


Author(s):  
Saken Koishibaevich Sheryazov ◽  
S. S. Isenov ◽  
A. B. Kaidar

The article analyzes the role, place and features of functioning of wind power plants. Several variants of generators and schemes for converting wind energy into electrical energy are given. A detailed analysis of existing wind units is provided. Recommendations are given for improving the reliability of wind power installations in smart grids.


2020 ◽  
Vol 207 ◽  
pp. 02013
Author(s):  
Cansev Genç ◽  
Abdulla Sakalli ◽  
Ivaylo Stoyanov ◽  
Teodor Iliev ◽  
Grigor Mihaylov ◽  
...  

This article analyses the development of wind energy in Turkey - the number and capacity of installed wind generators, as well as the generated electricity. It was established that the number of wind power plants is 99 with a total installed capacity of 3933 MW, and the amount of electricity produced by wind power plants is 17909.3 GWh / year. Turkey has been shown to have great potential for developing electricity generation from offshore wind farms. The increase in the number of offshore wind turbines in the coming years is expected to increase the relative share of renewable sources in the country’s energy mix, to contribute to the technological and industrial development of the regions, to produce electricity from renewable and environmentally friendly sources and to reduce the country’s energy dependence. It has been established that there are appropriate conditions in Turkey for the development of wind energy and preconditions have been created for achieving the target for promoting the use of renewable energy sources by 2023.


2022 ◽  
Vol 7 (4) ◽  
pp. 5241-5274
Author(s):  
Attaullah ◽  
◽  
Shahzaib Ashraf ◽  
Noor Rehman ◽  
Asghar Khan ◽  
...  

<abstract><p>Wind energy is one of the most significant renewable energy sources due to its widespread availability, low environmental impact, and great cost-effectiveness. The effective design of ideal wind energy extraction areas to generate electricity is one of the most critical issues in the exploitation of wind energy. The appropriate site selection for wind power plants is based on the concepts and criteria of sustainable environmental advancement, resulting in a low-cost and renewable energy source, as well as cost-effectiveness and job creation. The aim of this article is to introduce the idea of q-rung orthopair hesitant fuzzy rough set (q-ROHFRS) as a robust fusion of q-rung orthopair fuzzy set, hesitant fuzzy set, and rough set. A q-ROHFRS is a new approach towards modeling uncertainties in the multi-criteria decision making (MCDM). Various key properties of q-ROHFRS and some elementary operations on q-ROHFRSs are established. A list of novel q-rung orthopair hesitant fuzzy rough weighted geometric aggregation operators are developed on the basis of defined operational laws for q-ROHFRSs. Further, a decision making algorithm is developed to handle the uncertain and incomplete information in real word decision making problems. Then, a multi-attribute decision making method is established using q-rung orthopair hesitant fuzzy rough aggregation operators. Afterwards, a practical case study on evaluating the location of wind power plants is presented to validate the potential of the proposed technique. Further, comparative analysis based on the novel extended TOPSIS method is presented to demonstrate the capability of the proposed technique.</p></abstract>


2020 ◽  
Vol 154 ◽  
pp. 06004
Author(s):  
Yuriy Pantsyr ◽  
Іhor Garasymchuk ◽  
Vasyl Duganets ◽  
Mariia Melnyk ◽  
Oksana Yurchenko

The analysis of the development of alternative energy sources in the developed countries of the world was carried out, as well as the strategy of the implementation of wind energy in Ukraine was considered. The emphasis was on the design and operation of wind power units and the investment of investment funds in modernizing existing wind power plants and building new ones. The most attractive regions for wind power use in Ukraine was presented. The advantages and disadvantages of using nontraditional energy sources and the features of operation of wind power plants were substantiated.


Sign in / Sign up

Export Citation Format

Share Document