scholarly journals The water stability research of the rubber powder-modified asphalt mixture

Author(s):  
Jie Sun ◽  
Xi Lv ◽  
Yao Zhang ◽  
Jing Yang
2013 ◽  
Vol 477-478 ◽  
pp. 1175-1178
Author(s):  
Ling Zou ◽  
Jing Wei Ne ◽  
Weng Gang Zhang

70# and 90# matrix asphalt mixture with MaR were studied through dynamic modulus test, rutting test, freeze-thaw splitting test, bending test to study the applicability of the Modifying agent of rubber plastic compound (MaR) in matrix asphalt mixture.Test results were Compared with SBSI-C modified asphalt mixture.The results indicate that: high-temperature stability of MaR+70# asphalt mixture is as well as SBSI-C modified asphalt mixture,and is bettere than MaR+90# asphalt mixture; water stability of MaR+90# asphalt mixture is bettere than SBSI-C modified asphalt mixture and MaR+70# asphalt mixture; low temperature performance of MaR+90# asphalt mixture is bettere than MaR+70# asphalt mixture, but is worse than modified asphalt mixture SBSI-C ; MaR+70# asphalt mixture can be first used in area of resisting high temperature and rutting, MaR+90# asphalt mixture can be used if the water stability performance and low temperature performance are considered.


2019 ◽  
Vol 136 ◽  
pp. 03010
Author(s):  
Ma Qingna ◽  
Zhao Zhiqin ◽  
Xu Qian ◽  
Sun Feng

Adding sulphur dilution asphalt modifier SEAM to asphalt mixture is not only a modifier of asphalt mixture, but also an additive of asphalt mixture. When the modifier is added into the asphalt mixture, the road performance of the asphalt mixture can be improved. This paper studies SEAM modified asphalt mixture the Marshall property index, temperature stability, Water stability and fatigue feature in the Laboratory. On the based of the result of the experiment and analysis, SEAM can improve the high temperature stability, Water stability and fatigue feature. But the low temperature stability can’t improve.


Author(s):  
Hao Fu ◽  
Qian Chen ◽  
Zhi Song ◽  
Xudang Xiao ◽  
Zhentong Fan

2014 ◽  
Vol 941-944 ◽  
pp. 687-690 ◽  
Author(s):  
Zhao Hui Sun ◽  
Guang Qiang Zhu ◽  
Jing Ma ◽  
Qing Bin Yu ◽  
Bao Yang Yu ◽  
...  

High temperature, low temperature, water stability and fatigue test were done for three types of modified asphalt mixture of intermediate course used in high-grade highway engineering in Northeast region. The asphalt mixture design scheme with excellent performance suitable for application of intermediate course was selected for reference in Northeast area.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Wenhui Zhao ◽  
Xiangbing Xie ◽  
Guanghui Li ◽  
Jiuguang Geng ◽  
Meng Bao ◽  
...  

To expand the application range of modified asphalt and mixtures and effectively reduce the aggregation of nanomaterials in asphalt, nanocarbon/styrene butadiene styrene (SBS)/rubber powder composite-modified asphalt is proposed. This paper presents a laboratory study on the performance of nanocarbon/copolymer SBS/rubber powder composite-modified asphalt, and nanocarbon particles modified by titanate coupling agents as modifiers are selected. The nanocarbon/copolymer SBS/rubber powder composite-modified asphalt was prepared by a high-speed shearing method. The physical properties and rheological performance were assessed using ductility tests, softening point tests, penetration tests, dynamic shear rheometer (DSR) tests, and bending beam rheometer (BBR) tests. Furthermore, the mixture properties, including the high-temperature stability, low-temperature cracking resistance, moisture stability, and freeze-thaw splitting, were evaluated in the laboratory. The micromorphology of the base asphalt and composite-modified asphalt was examined by scanning electron microscopy (SEM), and the reactions between the modifiers and AH-70 base asphalt were studied by Fourier transform infrared spectroscopy (FTIR). The results reveal that the surface-modified nanocarbon and rubber powder additives substantially increased the softening point and penetration index of the base asphalt, with little obvious influence on the low-temperature performance. In addition, when nanocarbon/copolymer SBS/rubber powder composite-modified asphalt was used, the high-temperature stability and low-temperature cracking resistance of the nanocarbon/copolymer SBS/rubber powder composite-modified asphalt mixture were approximately 1.3 times those of the nanocarbon/rubber powder asphalt mixture. In terms of the micromorphology and reaction, the addition of the nanocarbon can increase the compatibility between the base asphalt and rubber powder, and then the addition of copolymer SBS can improve the structure of nanocarbon (after surface modification)/rubber powder-modified asphalt to form a stable network. Moreover, the physical reaction plays the dominant role in the modification process for the rubber powder and base asphalt, and chemical reactions occur in the modification process for the surface-modified nanocarbon and base asphalt.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Shuan Li ◽  
Xianghang Li ◽  
Xinquan Xu ◽  
Xiaoping Ji ◽  
Dawei Lv ◽  
...  

To reduce the temperature of asphalt pavements in summer and improve their high-temperature stability, tourmaline anion powder (TAP) was used as a modifier to prepare modified asphalt, which actively cools the pavement. The effects of different TAP contents on the high- and low-temperature performance of modified asphalt and its pavement cooling performance were studied based on the dynamic shear rheometer, low-temperature bending beam rheometer, and indoor rutting plate temperature difference tests; subsequently, the optimum TAP content was determined. Modified asphalt was used to prepare an active cooling antirutting asphalt mixture, and its pavement cooling performance was verified via outdoor lighting tests. High- and low-temperature dynamic modulus and low-temperature semicircular splitting tests were used to evaluate the high- and low-temperature performance; further, freeze-thaw splitting and immersion Marshall tests were performed to evaluate the water stability of the active cooling antirutting asphalt mixture. The results denote that TAP is useful for improving the rutting factor of asphalt. When the TAP content is 16% of the asphalt material, the maximum cooling value of the surface in laboratory tests becomes 5.9°C. When compared with an ordinary asphalt mixture, the dynamic stability of the active cooling antirutting asphalt mixture at medium and high temperatures increased by 18%–22%. The fracture energy can be increased by 12% at low temperatures. The maximum cooling value of the surfaces in outdoor tests is 7.2°C, and the water stability slightly decreases; however, it still satisfies the specification requirements.


2021 ◽  
Vol 276 ◽  
pp. 02034
Author(s):  
Jinfen Wei ◽  
Xundong Yang ◽  
Qiwei Zhou ◽  
Huoming Wang ◽  
Yunfei Fang

A kind of composite modified asphalt with high elasticity was prepared by SBS and high elasticity agent, and the asphalt mixture with easy compactness was applied. The high temperature, low temperature, water stability and fatigue properties of the mixture were evaluated by laboratory tests. The results show that the optimum content of high elasticity agent is about 6% for SBS modified asphalt. The pavement performance of the high-elasticity modified asphalt compacting mixture was improved to a certain extent. Compared with SBS modified asphalt SMA-13, the dynamic stability was increased by 13.5%. The water stability, low temperature crack resistance and fatigue resistance increased by 10.4%, 59.3% and 173%.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Haitao Zhang ◽  
Junfeng Sun ◽  
Mingyang Gong

PurposeThe purpose of this study is to compare and analyze the anti-aging durability of asphalt and asphalt mixture under the conditions of inherent and improved performance. The research contents include: the mechanical properties (dynamic stability, bending strain, freeze-thaw splitting tensile strength ratio (TSR)) of different modified asphalt mixtures were tested by using the best modified asphalt.Design/methodology/approachThe anti-aging durability of different modified asphalt was analyzed by using the results of macro tests such as penetration and softening point as evaluation indexes. Meanwhile, the change of the asphalt colloid instability index (Ic) in the aging process was used as the evaluation index to verify the results of the macroscopic test, and the best modified asphalt was obtained. On this basis, the composition of different modified asphalt mixtures was designed by using the best modified asphalt. Meanwhile, water stability was used as evaluation indexes to study the anti-aging durability of different modified asphalt mixtures.FindingsThe results show that styrene-butadiene-styrene (SBS) modified asphalt has better aging resistance. Due to the special storage time, the performance of rubber asphalt is also the best. Meanwhile, in terms of modified asphalt mixture, its high temperature performance and durability of anti-aging is as follows: 4% SBS /16% rubber modified asphalt mixture (IV) > 4% SBS modified asphalt mixture (II) > asphalt mixture (90#) (I) > 16% rubber modified asphalt mixture (III). The low temperature performance and durability of anti-aging is as follows: Ⅱ > IV > Ⅰ > Ⅲ. The water stability performance and durability of anti-aging is as follows: IV > Ⅲ > Ⅱ > Ⅰ.Originality/valueThe research results have important theoretical and guiding significance for exploring the change of intrinsic properties and improved properties of asphalt and asphalt mixture in the aging process and revealing the anti-aging mechanism of different modified asphalt mixtures.


2014 ◽  
Vol 587-589 ◽  
pp. 985-989 ◽  
Author(s):  
Yong Shou Yang ◽  
Qiang Dong

In order to improve the durability of granulated crumb rubber asphalt pavement, different amount of TPS modifier are added into granulated crumb rubber asphalt mixture to do tests of water-boiling, water immersion, immersing Marshall, cantabro immersion and some other indoor experiments. Through comparing with base asphalt and SBS modified asphalt, we found that the adhesion ability of asphalt and mineral aggregate and crumb rubber were granulated after adding TPS modifier. The water stability of granulated crumb rubber asphalt mixture is improved. The durability of granulated crumb rubber asphalt mixture has also been improved dramatically. In additions, the optimum mixing volume of TPS for granulated crumb rubber asphalt mixture is 12%; the mixing temperature of asphalt mixture is 185°C.


Sign in / Sign up

Export Citation Format

Share Document