scholarly journals Road performance of tourmaline/rubber powder modified asphalt mixture

Author(s):  
Hao Fu ◽  
Qian Chen ◽  
Zhi Song ◽  
Xudang Xiao ◽  
Zhentong Fan
2014 ◽  
Vol 900 ◽  
pp. 499-504
Author(s):  
Yu Mao ◽  
Yang Liu ◽  
Pei Wen Hao ◽  
Hai Nian Wang

A new type of rubber powder particle modifier can be produced by adding some performance improvement additives into the normal 40-60 mesh rubber powder and re-granulation, it proved to have better performances and less airborne dust, mixing well with base asphalt. Researching the performance indicators of rubber powder particles modified asphalt under different process parameters through the adjustment of shear temperature, shear rate, shear time and dosage of rubber powder in the process of producing rubber powder particles modified asphalt, the optimal process parameters was determined, and the road performance indicators of the modified asphalt mixture has been verified.


2019 ◽  
Vol 136 ◽  
pp. 03010
Author(s):  
Ma Qingna ◽  
Zhao Zhiqin ◽  
Xu Qian ◽  
Sun Feng

Adding sulphur dilution asphalt modifier SEAM to asphalt mixture is not only a modifier of asphalt mixture, but also an additive of asphalt mixture. When the modifier is added into the asphalt mixture, the road performance of the asphalt mixture can be improved. This paper studies SEAM modified asphalt mixture the Marshall property index, temperature stability, Water stability and fatigue feature in the Laboratory. On the based of the result of the experiment and analysis, SEAM can improve the high temperature stability, Water stability and fatigue feature. But the low temperature stability can’t improve.


2014 ◽  
Vol 941-944 ◽  
pp. 687-690 ◽  
Author(s):  
Zhao Hui Sun ◽  
Guang Qiang Zhu ◽  
Jing Ma ◽  
Qing Bin Yu ◽  
Bao Yang Yu ◽  
...  

High temperature, low temperature, water stability and fatigue test were done for three types of modified asphalt mixture of intermediate course used in high-grade highway engineering in Northeast region. The asphalt mixture design scheme with excellent performance suitable for application of intermediate course was selected for reference in Northeast area.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Wenhui Zhao ◽  
Xiangbing Xie ◽  
Guanghui Li ◽  
Jiuguang Geng ◽  
Meng Bao ◽  
...  

To expand the application range of modified asphalt and mixtures and effectively reduce the aggregation of nanomaterials in asphalt, nanocarbon/styrene butadiene styrene (SBS)/rubber powder composite-modified asphalt is proposed. This paper presents a laboratory study on the performance of nanocarbon/copolymer SBS/rubber powder composite-modified asphalt, and nanocarbon particles modified by titanate coupling agents as modifiers are selected. The nanocarbon/copolymer SBS/rubber powder composite-modified asphalt was prepared by a high-speed shearing method. The physical properties and rheological performance were assessed using ductility tests, softening point tests, penetration tests, dynamic shear rheometer (DSR) tests, and bending beam rheometer (BBR) tests. Furthermore, the mixture properties, including the high-temperature stability, low-temperature cracking resistance, moisture stability, and freeze-thaw splitting, were evaluated in the laboratory. The micromorphology of the base asphalt and composite-modified asphalt was examined by scanning electron microscopy (SEM), and the reactions between the modifiers and AH-70 base asphalt were studied by Fourier transform infrared spectroscopy (FTIR). The results reveal that the surface-modified nanocarbon and rubber powder additives substantially increased the softening point and penetration index of the base asphalt, with little obvious influence on the low-temperature performance. In addition, when nanocarbon/copolymer SBS/rubber powder composite-modified asphalt was used, the high-temperature stability and low-temperature cracking resistance of the nanocarbon/copolymer SBS/rubber powder composite-modified asphalt mixture were approximately 1.3 times those of the nanocarbon/rubber powder asphalt mixture. In terms of the micromorphology and reaction, the addition of the nanocarbon can increase the compatibility between the base asphalt and rubber powder, and then the addition of copolymer SBS can improve the structure of nanocarbon (after surface modification)/rubber powder-modified asphalt to form a stable network. Moreover, the physical reaction plays the dominant role in the modification process for the rubber powder and base asphalt, and chemical reactions occur in the modification process for the surface-modified nanocarbon and base asphalt.


2011 ◽  
Vol 374-377 ◽  
pp. 1511-1514
Author(s):  
Yang Guo ◽  
Ying Hua Zhao

Fiber reinforcement as an available attempt has been proved to be effective in improving the toughness of asphalt concrete and is becoming a new method for highway maintenance. When fiber modified asphalt mixture is used as the surface course of a reconstructive pavement, the interface bonding property between top and lower layers seems to become a crucial factor in the road performance of the long lasting pavement. The primary objective of the research is to study the influence of fiber inclusions on the interfacial shear property of the pavement. With the purpose of discussing the shear strength of the interface between Bonifiber modified asphalt mixture top layer and the normal asphalt mixture layer,the laboratory shear test was developed on MTS-810. Four kinds of double-layered cylindrical specimens were made to simulate the different pavement structures. Test results show that the overlaying with Bonifiber modified asphalt mixture improves not only the general road performance but also the interface property. It is concluded that, the interface property of pavement with fiber reinforced top layer behaves much better than that with normal asphalt concrete one.


2014 ◽  
Vol 694 ◽  
pp. 118-122
Author(s):  
Jie Xiao ◽  
Zhi Fan Mo ◽  
Hong Xin Lu ◽  
Xian Yuan Tang

A series of laboratory tests on warm-mix AC-13 dense gradation asphalt mixture with 3% EC120 were carried out by the method of identical volume. A comparative analysis of common hot asphalt mixture was performed. The results indicate that the reduction of compaction temperature of warm-mix modified bitumen mixture is 27.1°C with addition of 3% EC120. The road performances of warm-mix asphalt mixture determined by the method of identical volume satisfied the specification. Compared to the common hot asphalt mixture, the warm-mix modified asphalt mixture has excellent high temperature stability, slightly low moisture susceptibility and better low-temperature crack resistance.


2011 ◽  
Vol 287-290 ◽  
pp. 762-766
Author(s):  
Liang Fan ◽  
Xiao Jin Song ◽  
Yu Zhen Zhang

This report mainly evaluated the pavement performance of natural asphalt from Albania. Firstly, base asphalts were processed with natural asphalt by “wet method” modification technique to obtain modified asphalt; and mixture are produced with these modified asphalt binders, and then high temperature performance and moisture stability properties are evaluated by some standard methods. Analysis shows that this natural asphalt can remarkably improve the high temperature and moisture stabilities of asphalt mixture, and own cost-effective advantage.


Sign in / Sign up

Export Citation Format

Share Document