scholarly journals Research and Design of High Sensitivity FBAR Micro-mass Sensors

Author(s):  
Jiatai Ren ◽  
Hequn Chu ◽  
Yuhui Bai ◽  
Rui Wang ◽  
Pengguang Chen ◽  
...  
Author(s):  
Wenhua Zhang ◽  
Rajashree Baskaran ◽  
Kimberly L. Turner

The ability to detect mass change of the order of femtograms (10e-15g) opens up implementations of various precise chemical and biological sensors. Micro-scale oscillator based mass sensors are promising due to their small mass and high sensitivity. Many such sensors detect mass change by measuring the shift of natural frequency. We have reported previous work introducing the idea of using parametric resonance to detect mass change. This method utilizes stability behavior with mass variation as the detection criterion and high sensitivity is expected. This paper presents theoretical and experimental research on nonlinearity effects on the dynamic behavior of a MEMS oscillator, which is the prototype of such a mass sensor. A Duffing equation and a nonlinear Mathieu equation are used to model the behavior of nonlinear harmonic resonance and parametric resonance. Experimental results agree with the theoretical analysis very well. Some bulk equivalent parameters, such as Q factor, cubic stiffness and linear electrostatic stiffness can be estimated by studying the nonlinear behavior. The estimation of the parameters is important for design of the optimal mass sensor. The potential effects of nonlinearity on mass sensor application are discussed.


2005 ◽  
Vol 87 (1) ◽  
pp. 013102 ◽  
Author(s):  
Zachary J. Davis ◽  
Anja Boisen

2013 ◽  
Vol 562-565 ◽  
pp. 1257-1262
Author(s):  
Hong Yuan Zhao ◽  
Dai Hua Zhang ◽  
Wei Pang ◽  
Hao Zhang

A high-resolution humidity sensor based on MEMS FBAR with spin-coated PVA thin film is reported. The sensors exhibit very high sensitivity to water vapor and are able to detect down to 0.08 % change in relative humidity by monitoring the shift in series resonant frequency of the FBARs. The integration of these devices with CMOS oscillating circuits and RF front-end chips will create great potential of FBAR based mass sensors in a wide variety of applications in chemical and biological sensing.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1823
Author(s):  
Yuki Kasai ◽  
Hiroshi Yabuno ◽  
Yasuyuki Yamamoto ◽  
Sohei Matsumoto

Mass sensors based on the eigenmode shift of coupled cantilevers achieve much higher sensitivity than those based on the single cantilever’s eigenfrequency shift. In the former sensors, two identical cantilevers and a weak coupling stiffness between them are required to achieve high sensitivity. However, conventional coupled cantilevers cannot satisfy these requirements because of machining accuracy. To satisfy both requirements, a virtual coupling between a real macrocantilever and a virtual cantilever, whose dynamics was calculated using a digital computer, was proposed in our previous research. The sensitive mass sensing of mg-order masses was achieved. In the present work, for minute mass sensing, we replace the real macrocantilever with a real microcantilever. The calculation speed of a digital computer is not fast enough to calculate the virtual cantilever’s dynamics because the natural frequency of the microcantilver is much higher than that of the macrocantilever. Therefore, we use an analog circuit instead of a digital computer to achieve virtual coupling with the virtual cantilever. The proposed system enables us to tune the virtual cantilever’s parameters to satisfy both requirements for high sensitivity by changing the analog circuit parameters. We verified experimentally that the proposed system achieved high sensitivity for mass sensing of the order of nanograms.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1361
Author(s):  
Yusi Zhu ◽  
Zhan Zhao ◽  
Zhen Fang ◽  
Lidong Du

Single-resonator-based (SRB) sensors have thrived in many sensing applications. However, they cannot meet the high-sensitivity requirement of future high-end markets such as ultra-small mass sensors and ultra-low accelerometers, and are vulnerable to environmental influences. It is fortunate that the integration of dual or multiple resonators into a sensor has become an effective way to solve such issues. Studies have shown that dual-resonator-based (DRB) and multiple-resonator-based (MRB) MEMS sensors have the ability to reject environmental influences, and their sensitivity is tens or hundreds of times that of SRB sensors. Hence, it is worth understanding the state-of-the-art technology behind DRB and MRB MEMS sensors to promote their application in future high-end markets.


1992 ◽  
Vol 64 (11) ◽  
pp. 1289-1294 ◽  
Author(s):  
Ronald P. O'Toole ◽  
Stanley G. Burns ◽  
Glenn J. Bastiaans ◽  
Marc D. Porter

1994 ◽  
Vol 144 ◽  
pp. 21-28 ◽  
Author(s):  
G. B. Gelfreikh

AbstractA review of methods of measuring magnetic fields in the solar corona using spectral-polarization observations at microwaves with high spatial resolution is presented. The methods are based on the theory of thermal bremsstrahlung, thermal cyclotron emission, propagation of radio waves in quasi-transverse magnetic field and Faraday rotation of the plane of polarization. The most explicit program of measurements of magnetic fields in the atmosphere of solar active regions has been carried out using radio observations performed on the large reflector radio telescope of the Russian Academy of Sciences — RATAN-600. This proved possible due to good wavelength coverage, multichannel spectrographs observations and high sensitivity to polarization of the instrument. Besides direct measurements of the strength of the magnetic fields in some cases the peculiar parameters of radio sources, such as very steep spectra and high brightness temperatures provide some information on a very complicated local structure of the coronal magnetic field. Of special interest are the results found from combined RATAN-600 and large antennas of aperture synthesis (VLA and WSRT), the latter giving more detailed information on twodimensional structure of radio sources. The bulk of the data obtained allows us to investigate themagnetospheresof the solar active regions as the space in the solar corona where the structures and physical processes are controlled both by the photospheric/underphotospheric currents and surrounding “quiet” corona.


Sign in / Sign up

Export Citation Format

Share Document