scholarly journals Numerical analysis of influence of joint inclination on the stability of high rock slope with weak interlayer

2021 ◽  
Vol 671 (1) ◽  
pp. 012005
Author(s):  
Lei Wang ◽  
Yuna Qi ◽  
Wei Wang ◽  
Zhandong Su
2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Qibing Zhan ◽  
Xinjian Sun ◽  
Cheng Li ◽  
Yawei Zhao ◽  
Xinjie Zhou ◽  
...  

This study presents a stability analysis of a high-steep rock slope with two faults during excavations and evaluates the effectiveness of a proposed reinforcement method using prestressed anchor cables. A 3D finite difference model was established based on the strength reduction method using FLAC3D software. The influence of various fault conditions and the effectiveness of the reinforcement on the slope stability during the excavation process were analyzed and compared to field monitoring data. The numerical analysis and field monitoring results showed that the fault close to the slope surface (f20) was prone to the local instability under external forces caused by the excavation, but a fault further away from the slope surface (f14) had insignificant influence on the stability of the slope. Based on the numerical analysis results, the proposed reinforcement measure can increase the factor of safety (FOS) of the slope by 19.2%. The field monitoring data also showed that the displacement of the monitoring point gradually decreased after the reinforcement, and the deformation of the slope was effectively controlled.


2021 ◽  
Author(s):  
Tianbai Zhou ◽  
Lingfan Zhang ◽  
Jian Cheng ◽  
Jianming Wang ◽  
Xiaoyu Zhang ◽  
...  

Abstract Due to long-term mining, a series of high and steep rock slopes have been formed in the open-pit mine. For high rock slopes, rainfall infiltration is the main cause of landslide. Therefore, the stability analysis of high rock slope under rainfall has become a key issue in the open-pit mine engineering. In this work, aiming at the high stress condition of high rock slope, the instantaneous internal friction angle and instantaneous cohesion of rock mass under different stress states are deduced, and the a nonlinear strength reduction method for high rock slope is established according to the relationship between normal stress and shear stress of rock mass under the Hoke-Brown criterion. The numerical calculation results show that the factor of safety (FOS) for high rock slope calculated by the proposed method is more reasonable. Taking the southwest slope of Dagushan Iron Mine as the research background, the safety factors of high rock slope under different rainfall conditions are calculated by COMSOL Multiphysics. And the stability analysis of high rock slope in open-pit mine under rainfall are carried out.


2014 ◽  
Vol 1065-1069 ◽  
pp. 208-213
Author(s):  
Chong Ping Liu ◽  
Tuan Le Wang ◽  
Wen Zhong Hao ◽  
Zhen Hua Qin

The advantage outward joints connectivity rate (CR) which extend along the slope plays an important role to overall stability of the high rock slope, but less research on it has been done. In order to research the 180m high rock slope at water inlet of Wudongde hydropower station at Jinsha River, qualitative and quantitative analysis methods have been used. Based on the statistics of the outward joints CR which extend along the slope, and the weighted average parameters of the “bottom sliding surface” combined with the rock bridge, the stability factor of slope has been calculated by rigid body limit equilibrium method. According to the CR sensitivity analysis and calculation, the effect degrees of the joint connectivity rate to the slope stability, and the effect degrees of the bandwidth selection to the CR and stability factors in the bandwidth projection method of linear CR have been demonstrated in paper.


2011 ◽  
Vol 368-373 ◽  
pp. 219-224
Author(s):  
Lin Nie ◽  
De Pei Zhou

The mainly purpose of the paper is to investigate the slope excavation deformation of the rock slope at the deep-cutting valley under different load conditions. As an example of the rock slope at the intake of the sluice tunnel of Jinping hydropower station, whose slope deformation characteristics was system analyzed by numerical method during different construction conditions. The dead weight, rain, seism and theirs combination were involved in the numerical analysis. The numerical results could give a reference for the excavation stability of the high rock slope, and it is the basis to determine the reasonable construction method and to optimize the design of the strengthening and enhancing engineering.


2014 ◽  
Vol 620 ◽  
pp. 205-209 ◽  
Author(s):  
Zhen Zhong Shen ◽  
Bai Song Nie ◽  
Li Qun Xu ◽  
Lei Yang ◽  
Ning Wang

The stability of high rock slopes under the flood discharge atomization and rainfall is an in-negligible problem especially for the hydropower station with high head during the flood discharge. According to the complicated geological conditions of a high rock slope with the flood discharge problem in China, the method of the saturated-unsaturated unsteady seepage if used, thus the finite element model for the high rock slope in the downstream of the power station is set up. Based on the model, the distribution regularities of the unsteady seepage field of the rock slope is studied under the different discharge atomization and rainfall intensity. Moreover, based on the theory of continuous-discontinuous deformation, the finite element model is set up to analyze the stability of the slope, thus the deformation law of slopes under the flood discharge atomization and rainfall is studied and the safety of the slope is evaluated, and what's more, the engineering measures for improve the stability of the stability of the slope is put forward.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jinglong Li ◽  
Bo Zhang ◽  
Bin Sui

The existence of the weak interlayer of the rock slope changes its mechanical characteristics. To ensure the safety of the slope, it is necessary to analyze the overall stability of the slope. Taking the double-layer weak interlayer rock slope beside 318 National Road in Qiyue Mountain, Hubei Province, as an example, a slope model with a weak interlayer was established through GTS software, and the model was imported into FLAC3D for calculation, and the deformation of the slope by the double-layer soft interlayer was studied. The influence of characteristics and safety factors reveals the controlling effect of the double-layer weak interlayer on the stability of the slope and its failure mode. The potential sliding surface of the slope is determined to be the lower weak interlayer, and the weak interlayer after the anchor cable reinforcement is carried out. Numerical analysis shows that the reasonable application of anchor cables significantly improves slope stability. The research results can provide reference significance for slope stability analysis of similar projects.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Ruili Lu ◽  
Wei Wei ◽  
Kaiwei Shang ◽  
Xiangyang Jing

In order to study the failure mechanism and assess the stability of the inlet slope of the outlet structure of Lianghekou Hydropower station, the strength reduction method considering the ubiquitous joint model is proposed. Firstly, two-dimension numerical models are built to investigate the influence of the dilation angle of ubiquitous joints, mesh discretization, and solution domain size on the slope stability. It is found that the factor of safety is insensitive to the dilation angle of ubiquitous joints and the solution domain size but sensitive to the mesh discretization when the number of elements less than a certain threshold. Then, a complex three-dimension numerical model is built to assess the stability of the inlet slope of the outlet structure of Lianghekou Hydropower station. During the strength reduction procedure, the progressive failure process and the final failure surface of the slope are obtained. Furthermore, the comparison of factors of safety obtained from strength reduction method and analytical solutions indicates that the effect of vertical side boundaries plays an important role in the stability of jointed rock slope, and the cohesive force is the main contribution to the resistant force of vertical side boundaries.


Sign in / Sign up

Export Citation Format

Share Document