scholarly journals Analysis of Horizontal Displacement Monitoring Data of Shimenzi Arch Dam after “12.8” Earthquake

2021 ◽  
Vol 697 (1) ◽  
pp. 012028
Author(s):  
Yinan Li ◽  
Tingting Zhang ◽  
Lingzi DuanMu
2014 ◽  
Vol 670-671 ◽  
pp. 651-654
Author(s):  
Er Feng Zhao ◽  
Yu Feng Jiang ◽  
Yan Ling Gu

With the development of 300m super-high dams are built in the southwest of China, reservoir water gravity will make the settlement of the reservoir basin, which will make dam tilt upstream. In the paper, reservoir settlement will be studied in-depth on the basis of monitoring data analysis and numerical simulation comprehensively. First, reservoir basin will be sinking with the rising of the upstream water gradually according to level monitoring data. Second, those affect factors of FEM calculation have been explored comparatively, such as displacement modes, element geometry and boundary conditions. Third, reservoir, dam and foundation are integrated into a whole to establish a wide spread finite element model. At last, reservoir deformation and its influence factors are determined through the simulation of the bedrock depth, the extending length of the upstream and downstream and different water levels. Those methods have been applied into an engineering project and analysis results show that the settlement of the reservoir will make high arch dam tilt upstream, the higher of the water level, the larger of the horizontal displacement. Accordingly, reservoir deformation should be considered deeply on the appraisement of super-high arch dam operating status in future.


2021 ◽  
Vol 276 ◽  
pp. 01030
Author(s):  
Rui Zhang ◽  
Benjun Shi ◽  
Shuanglong Cai ◽  
Haojun Wang

At present, the analysis of monitoring data for the stress of dam is mostly based on statistical models. However, the monitoring data of the stress on some arch dams have considerably large error, it is hard to build a reasonable statistic model based on the monitoring data. In order to solve the practical application problem of the project, this paper calculates the elastic modulus of the dam by using finite element analysis based on the displacement of the hydraulic component separated from the statistical model of horizontal displacement. Then according to the reversed elastic modulus, this paper has calculated the dam stress under different water levels and temperature conditions. Finally, it has built a stress-deterministic model of the dam.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jiingmei Zhang ◽  
Chongshi Gu

Displacement monitoring data modeling is important for evaluating the performance and health conditions of concrete dams. Conventional displacement monitoring models of concrete dams decompose the total displacement into the water pressure component, temperature component, and time-dependent component. And the crack-induced displacement is generally incorporated into the time-dependent component, thus weakening the interpretability of the model. In the practical engineering modeling, some significant explaining variables are selected while the others are eliminated by applying commonly used regression methods which occasionally show instability. This paper proposes a crack-considered elastic net monitoring model of concrete dam displacement to improve the interpretability and stability. In this model, the mathematical expression of the crack-induced displacement component is derived through the analysis of large surface crack’s effect on the concrete dam displacement to improve the interpretability of the model. Moreover, the elastic net method with better stability is used to solve the crack-considered displacement monitoring model. Sequentially, the proposed model is applied to analyze the radial displacement of a gravity arch dam. The results demonstrate that the proposed model contributes to more reasonable explaining variables’ selection and better coefficients’ estimation and also indicate better interpretability and higher predictive precision.


2014 ◽  
Vol 484-485 ◽  
pp. 404-407 ◽  
Author(s):  
Qing Guo Ren ◽  
Guang Zhang ◽  
Xiao Guang Yue ◽  
Wen Cheng Liao

Deep soil horizontal displacement monitoring can measure the retaining wall board, row piles deformed shape, reflect the foundation on the vertical profile of horizontal displacement with depth changes in the law, predict foundation stability and security risks. Combined with Wuhan WANGJiaDun Pit Engineering, this article introduce CX-3C inclinometer work principle, put forward the calculated optimization measures of inclinometer, and analysis the main factors which should be considered to arrange the measuring points.


2013 ◽  
Vol 663 ◽  
pp. 198-201
Author(s):  
Ya Jun Wang ◽  
Zheng Zuo ◽  
Xin Jun Yan ◽  
Peng Wei Guo

The fuzzy cluster analysis for monitoring data, based on SOM neural network, was applied to study the working behaviors of transverse joints of the super arch dam during construction phase. The parental samples were identified with the classification results of fuzzy-cluster researches. Thereby, the Elman network was used to diagnose test samples. Introducing the transverse joints monitoring data from super arch dam as an example, the results show that the proposed method has superb applicability and stability in both of error analysis and diagnosis accuracy.


2022 ◽  
Vol 12 (2) ◽  
pp. 612
Author(s):  
Chunhui Ma ◽  
Tianhao Zhao ◽  
Gaochao Li ◽  
Anan Zhang ◽  
Lin Cheng

As an essential load of the concrete dam, the abnormal change of uplift pressure directly threatens the safety and stability of the concrete dam. Therefore, it is of great significance to accurately and efficiently excavate the hidden information of the uplift pressure monitoring data to clarify the safety state of the concrete dam. Therefore, in this paper, density-based spatial clustering of applications with noise (DBSCAN) method is used to intelligently identify the abnormal occurrence point and abnormal stable stage in the monitoring data. Then, an application method of measured uplift pressure is put forward to accurately reflect the spatial distribution and abnormal position of uplift pressure in the dam foundation. It is easy to calculate and connect with the finite element method through self-written software. Finally, the measured uplift pressure is applied to the finite element model of the concrete dam. By comparing the structural behavior of the concrete dam under the design and measured uplift pressure, the influence of abnormal uplift pressure on the safety state of the concrete dam is clarified, which can guide the project operation. Taking a 98.5 m concrete arch dam in western China as an example, the above analysis ideas and calculation methods have been verified. The abnormal identification method and uplift pressure applying method can provide ideas and tools for the structural diagnosis of a concrete dam.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3056
Author(s):  
Chengzhi Xia ◽  
Guangyin Lu ◽  
Ziqiang Zhu ◽  
Lianrong Wu ◽  
Liang Zhang ◽  
...  

The strength and hydraulic conductivity anisotropy of rock slopes have a great impact on the slope stability. This study took a layered rock slope in Pulang, Southwestern China as a case study. The strength conversion equations of the seriously weathered rock mass were proposed. Then, considering the anisotropy ratio and anisotropy angle (dip angle of bedding plane) of strength and hydraulic conductivity, the deformation and stability characteristics of rock slope were calculated and compared with field monitoring data. The results showed that the sensitivity analysis of strength and hydraulic conductivity anisotropy could successfully predict the occurrence time, horizontal displacement (HD), and the scope of the rock landslide. When the anisotropy ratio was 0.01 and the dip angle was 30°, the calculated HD and scope of the landslide were consistent with the field monitoring data, which verified the feasibility of the strength conversion equations. The maximum horizontal displacement (MHD) reached the maximum value at the dip angle of 30°, and the MHD reached the minimum value at the dip angle of 60°. When the dip angle was 30°, the overall factor of safety (FS) and the minimum factor of safety (MFS) of the rock slope were the smallest. By assuming that the layered rock slope was homogeneous, the HD and MHD would be underestimated and FS and MFS would be overestimated. The obtained results are likely to provide a theoretical basis for the prediction and monitoring of layered rock landslides.


Sign in / Sign up

Export Citation Format

Share Document