scholarly journals Application of FME Deterministic Model in the Calculation of a Reservoir Arch Dam

2021 ◽  
Vol 276 ◽  
pp. 01030
Author(s):  
Rui Zhang ◽  
Benjun Shi ◽  
Shuanglong Cai ◽  
Haojun Wang

At present, the analysis of monitoring data for the stress of dam is mostly based on statistical models. However, the monitoring data of the stress on some arch dams have considerably large error, it is hard to build a reasonable statistic model based on the monitoring data. In order to solve the practical application problem of the project, this paper calculates the elastic modulus of the dam by using finite element analysis based on the displacement of the hydraulic component separated from the statistical model of horizontal displacement. Then according to the reversed elastic modulus, this paper has calculated the dam stress under different water levels and temperature conditions. Finally, it has built a stress-deterministic model of the dam.

2014 ◽  
Vol 670-671 ◽  
pp. 651-654
Author(s):  
Er Feng Zhao ◽  
Yu Feng Jiang ◽  
Yan Ling Gu

With the development of 300m super-high dams are built in the southwest of China, reservoir water gravity will make the settlement of the reservoir basin, which will make dam tilt upstream. In the paper, reservoir settlement will be studied in-depth on the basis of monitoring data analysis and numerical simulation comprehensively. First, reservoir basin will be sinking with the rising of the upstream water gradually according to level monitoring data. Second, those affect factors of FEM calculation have been explored comparatively, such as displacement modes, element geometry and boundary conditions. Third, reservoir, dam and foundation are integrated into a whole to establish a wide spread finite element model. At last, reservoir deformation and its influence factors are determined through the simulation of the bedrock depth, the extending length of the upstream and downstream and different water levels. Those methods have been applied into an engineering project and analysis results show that the settlement of the reservoir will make high arch dam tilt upstream, the higher of the water level, the larger of the horizontal displacement. Accordingly, reservoir deformation should be considered deeply on the appraisement of super-high arch dam operating status in future.


Author(s):  
Farrokh Sheibany ◽  
Mohsen Ghaemian

A three-dimensional finite element analysis was carried out to determine the annual variation of temperature and thermal stresses of a concrete arch dam. Appropriate heat transfer boundary conditions in the dam body were used for air and reservoir temperature as well as solar radiation variations. Karaj arch dam in Iran was used as a case study. The rate of convergence of the numerical solution is examined. Results of the finite element analysis show that probable cracks occur in a very narrow region of the downstream face. Thermal loads have the most significant effects for causing downstream cracks in comparison with self-weigh and hydrostatic loads. The cracked areas of downstream face conform to the regions that have the highest temperature in downstream face. It can be associated to the solar radiation, which shows two-dimensional analysis of an arch dam cannot yields accurate results and three-dimensional analysis is necessary.


Author(s):  
Nishiuchi Tatsuo

In order to estimate the seismic safety of existing arch dams, it is essential to assess the static behavior and the mechanical resistance of arch dam. Numerical analysis model for transverse joints (contraction joints) of the arch dam is developed considering the separation, sliding and re-contact behaviors of contraction joints. The static behaviors of an arch dam under annual change of temperature and water level were calculated by using non-linear three-dimensional finite element analysis method that incorporated the developed numerical analysis model of contraction joints. The displacement of the dam body was compared both in analysis and in measured data. At a result, the calculated results can give a good estimation for dam deformation of an existing arch dam caused by those loads. In addition, the effective arch zone was formed under consecutive contraction joints. Thus, the nature of load capacity mechanism was identified. Using these calculated results, the numerical prediction on the displacement of an existing arch dam was proposed for daily management.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Bo Chen ◽  
Xiao Fu ◽  
Xuyuan Guo ◽  
Chongshi Gu ◽  
Chenfei Shao ◽  
...  

Real-time monitoring of the actual elastic modulus is essential and necessary to ensure the safe operation of arch dams. The zoning elastic modulus of a high arch dam is inversed by using deformation safety monitoring data in the operation period, based on the particle swarm optimization with gravitation search algorithm for support vector machine (PSOGSA-SVM) method. Firstly, the measured data of multipoints with a pendulum are separated to construct the initial sample training set; then, an optimal inversion model is established to reflect the complex nonlinear relationship between the mechanical parameters of the high arch dam and the deformation of measured points; finally, the PSOGSA-SVM method is used to train and dynamically update the training set so as to realize the optimization solution of the inversion model. The proposed inversion method is successfully applied to a high arch dam in China to verify its feasibility and validity. The results show that the actual elastic modulus of the dam body is much larger than the initial elastic modulus, which is beneficial to structural stability.


2012 ◽  
Vol 170-173 ◽  
pp. 2013-2016
Author(s):  
Bo Li ◽  
Li Li Liu ◽  
Da Zhi Li ◽  
Jun Liang

Monitoring data of the arch crown dam section of the Geheyan concrete gravity arch dam were qualitatively and quantitatively analyzed. The analysis results show that the measured data and year changes of the dam horizontal displacement are small, the influence of the water level and temperature on the arch crown dam section is normal, the influence of the aging on the dam horizontal displacement is little, and the aging component has become stable. Therefore, it can be shown that the arch crown dam section of the Geheyan concrete gravity dam is in elastic state, and the horizontal displacement is accord with general deformation law of concrete arch dams.


2013 ◽  
Vol 405-408 ◽  
pp. 617-620
Author(s):  
Er Feng Zhao ◽  
Li Bing Zhang

Reservoir basin deformation monitoring data of some high arch dams has shown that the upstream of the dam subsided while the downstream warped upward slightly. Therefore, combining reservoir basin with high arch dam and foundation, the widespread finite element model is built and the reservoir basin deformation and its influence factor weight are determined through the simulation of the bedrock depth, the extending length of the upstream and downstream and different water levels based on an improved entropy method. The engineering simulation model has proved the reservoir basin deformation mechanism. Moreover, the reservoir basin deformation will tend to converge when the simulation model expands to certain extent. The research can provide suggestions for deformation doubts occurring during the high arch dam operation.


2013 ◽  
Vol 3 (3) ◽  
Author(s):  
Mohammad Hariri-Ardebili ◽  
Hasan Mirzabozorg ◽  
M. Kianoush

AbstractDam-reservoir interaction is one of the classic coupled problems in which two various environments with different physical characteristics are in contact with each other on interface boundary. Consideration of such interaction is important in design of new dams as well as on safety evaluation of the existing ones. In the present study, the effect of hydrodynamic pressures at various reservoir operational levels on seismic behavior of an arch dam is investigated. Dez ultra-high arch dam in Iran was selected as case study and all contraction and peripheral joints were simulated using node-to-node contact elements which have the ability of opening/closing and tangential movement. In addition, stage construction effects including joint grouting based on available construction reports were considered. The reservoir was assumed to be compressible and the foundation rock was modeled to account for its flexibility. The TABAS earthquake record was used to excite the finite element model of dam-reservoir-foundation system. It was found that dam-reservoir interaction has significant structural effects on the system and generally, operating the considered arch dam at different water levels can highly affects the distribution of the crack prone area under the maximum credible earthquake.


2014 ◽  
Vol 1065-1069 ◽  
pp. 19-22
Author(s):  
Zhen Feng Wang ◽  
Ke Sheng Ma

Based on ABAQUS finite element analysis software simulation, the finite element model for dynamic analysis of rigid pile composite foundation and superstructure interaction system is established, which selects the two kinds of models, by simulating the soil dynamic constitutive model, selecting appropriate artificial boundary.The influence of rigid pile composite foundation on balance and imbalance of varying rigidity is analyzed under seismic loads. The result shows that the maximum bending moment and the horizontal displacement of the long pile is much greater than that of the short pile under seismic loads, the long pile of bending moment is larger in the position of stiffness change. By constrast, under the same economic condition, the aseismic performance of of rigid pile composite foundation on balance of varying rigidity is better than that of rigid pile composite foundation on imbalance of varying rigidity.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Sergio Vincenzo Calcina ◽  
Laura Eltrudis ◽  
Luca Piroddi ◽  
Gaetano Ranieri

This paper deals with the ambient vibration tests performed in an arch dam in two different working conditions in order to assess the effect produced by two different reservoir water levels on the structural vibration properties. The study consists of an experimental part and a numerical part. The experimental tests were carried out in two different periods of the year, at the beginning of autumn (October 2012) and at the end of winter (March 2013), respectively. The measurements were performed using a fast technique based on asynchronous records of microtremor time-series. In-contact single-station measurements were done by means of one single high resolution triaxial tromometer and two low-frequency seismometers, placed in different points of the structure. The Standard Spectral Ratio method has been used to evaluate the natural frequencies of vibration of the structure. A 3D finite element model of the arch dam-reservoir-foundation system has been developed to verify analytically determined vibration properties, such as natural frequencies and mode shapes, and their changes linked to water level with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document