scholarly journals Theoretical Study on the Size Effect of the Rate Characteristics of Concrete Cubes Compressive Strength

2021 ◽  
Vol 719 (2) ◽  
pp. 022083
Author(s):  
Hongyu Zhou ◽  
Yanan Liu ◽  
Yun Zhou ◽  
Qi Tang
2014 ◽  
Vol 887-888 ◽  
pp. 824-829
Author(s):  
Qing Fang Lv ◽  
Ji Hong Qin ◽  
Ran Zhu

Laminated veneer lumber is taken as an object of study, and use LVL specimens of different sizes for compression test and tensile test. The goal of the experiment is to investigate the size effect on compressive strength and tensile strength as well as the influence of the secondary glued laminated face, which appears in the secondary molding processes. The results show that both compressive strength and tensile strength have the size effect apparently and the existence of the secondary glued laminated face lower the compressive strength of LVL specimens. Afterwards, the relationship between compressive strength and volume along with tensile strength and area are obtained by the test results.


Author(s):  
Han Zhang ◽  
Haitao Li ◽  
Chaokun Hong ◽  
Zhenhua Xiong ◽  
Rodolfo Lorenzo ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Keun-Hyeok Yang ◽  
Yongjei Lee ◽  
Ju-Hyun Mun

In this study, a stress-strain model for unconfined concrete with the consideration of the size effect was proposed. The compressive strength model that is based on the function of specimen width and aspect ratio was used for determining the maximum stress. In addition, in stress-strain relationship, a strain at the maximum stress was formulated as a function of compressive strength considering the size effect using the nonlinear regression analysis of data records compiled from a wide variety of specimens. The descending branch after the maximum stress was formulated with the consideration of the effect of decreasing area of fracture energy with the increase in equivalent diameter and aspect ratio of the specimen in the compression damage zone (CDZ) model. The key parameter for the slope of the descending branch was formulated as a function of equivalent diameter and aspect ratio of the specimen, concrete density, and compressive strength of concrete. Consequently, a rational stress-strain model for unconfined concrete was proposed. This model reflects trends that the maximum stress and strain at the peak stress decrease and the slope of the descending branch increases, when the equivalent diameter and aspect ratio of the specimen increase. The proposed model agrees well with the test results, irrespective of the compressive strength of concrete, concrete type, equivalent diameter, and aspect ratio of the specimen.


2013 ◽  
Vol 351-352 ◽  
pp. 422-426
Author(s):  
Yong Ping Xie ◽  
Lei Jia ◽  
Gang Sun

With the development of modern constructional technique, more attention on the size effect is paid by academics and engineers. The normal section bearing capacity of Reinforced Concrete Column is analyzed by eccentrically compressed theory firstly. The size effect on normal section bearing capacity of reinforced concrete column is obtained by theoretical analysis and experimental summary. The size effect formula of concrete compressive strength is proposed. Finally, a research thinking of size effect on bearing capacity is suggested.


2013 ◽  
Vol 19 (7) ◽  
pp. 1964-1968
Author(s):  
Dongping L ◽  
Jun Li ◽  
Yangjian Xu ◽  
Wei Wei

2012 ◽  
Vol 229-231 ◽  
pp. 233-238 ◽  
Author(s):  
Ze Hui Chen ◽  
Chang Wu Liu ◽  
Ji Wei Deng

Using the MTS testing machine, the uniaxial compressive test of varisized da-qing limestones were undertaken, and the effect of dimensions about compressive strength, peak strain, elastic modulus and destructional forms of rock specimens were studied. It demonstrates that along with the increase of length-diameter ratio, peak strain and compressive strength turn smaller, elastic modulus gradually increases, the destruction of rock samples have a transformation from splitting failure to shear failure. Combined with the test results, Obert L model and Yang Shengqi model, the two size-effect models with extensive applications are analyzed and contrasted. And the conclusion is drawn that Obert L model has a relatively broad applicability, while Yang Shengqi model has a stronger Targeting and higher accuracy. Thus based on the Yang Shengqi model, the size-effect model of da-qing limestone is put forward, and the result indicates that this model corresponds well with the test results, having certain practical value.


2013 ◽  
Vol 634-638 ◽  
pp. 2742-2745 ◽  
Author(s):  
Jeong Eun Kim ◽  
Wan Shin Park ◽  
Nam Yong Eom ◽  
Do Gyeum Kim ◽  
Jea Myoung Noh

This study undertook the research of size effect on compressive strength and modulus of elasticity, respectively. The parameters of this study are curing age and fly ash replacement ratio to investigate size effect of Type A (100mm x 200mm) and Type B (150mm x 300mm) specimens in high performance concrete. On this study, high performance concrete was fabricated with different FA contents of 10%, 20% and 30%. The measurements were performed on days 28 and 91.


Sign in / Sign up

Export Citation Format

Share Document