scholarly journals Increasing the Corrosion Resistance of the Material of Oil and Gas Equipment in Water-Salt Solutions by Changing the Electrochemical Parameters

2021 ◽  
Vol 720 (1) ◽  
pp. 012142
Author(s):  
M Yu Pechenkina ◽  
O R Latypov ◽  
D E Bugai
2020 ◽  
Vol 18 (2) ◽  
pp. 112
Author(s):  
M.Yu. Pechenkina ◽  
D.R. Latypova ◽  
I.G. Ibragimov ◽  
O.R. Latypov

Alloy Digest ◽  
1995 ◽  
Vol 44 (1) ◽  

Abstract SANDVIK SANICRO 41 is a nickel-base corrosion resistant alloy with a composition balanced to resist both oxidizing and reducing environments. A high-strength version (110) is available for oil and gas production. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: Ni-475. Producer or source: Sandvik.


2017 ◽  
Vol 122 (3) ◽  
pp. 440-446 ◽  
Author(s):  
A. V. Voitylov ◽  
V. V. Voitylov ◽  
S. A. Klemeshev ◽  
M. P. Petrov ◽  
A. A. Trusov ◽  
...  

2021 ◽  
Vol 892 ◽  
pp. 115-123
Author(s):  
Viktor Malau ◽  
Wisnu Hakiki

Piping systems at gathering stations in the oil and gas industries often fail due to corrosion attacks from the brine water solution containing 8% NaCl that flows through the system. This solution is highly corrosive on the API 5L grade B steel pipes, thereby shortening its lifespan, with an increase in the frequency of pipe replacements. However, the corrosion resistance of API 5L grade B pipes can be improved by using chromate and molybdate inhibitors. Therefore, the objective of this research is to improve the corrosion resistance of the steel pipes using sodium chromate (Na2CrO4) and sodium molybdate (Na2MoO4) inhibitors with concentrations of 0.2, 0.4, 0.6, 0.8 and 1,0%. This research also aim to determine the optimum concentration of inhibitors to produce minimum corrosion rate, by testing the brine water solution containing 8% NaCl through the potentiodynamic polarization method. The results show that generally, the addition of sodium chromate and sodium molybdate inhibitors to the brine solution causes the steel pipes to be more resistant to corrosion. Furthermore, the sodium chromate inhibitor concentration of 0.6% produces the greatest corrosion potential of – 400 mV with the lowest rate of 0.38 mpy, while sodium molybdate concentration of 0.4% produces the highest corrosion potential of – 385 mV with the lowest rate of 0.34 mpy. The results of SEM observations at 0.4% sodium molybdate concentration showed that the corrosion inhibition/passivation effect of the inhibitor made the steel surface smoother, while the sodium chromate inhibitor at similar percentage failed to reach the optimal concentration to inhibit the corrosion process.


2021 ◽  
Vol 225 ◽  
pp. 01008
Author(s):  
Oleg Latypov ◽  
Sergey Cherepashkin ◽  
Dina Latypova

Corrosion of equipment in the oil and gas complex is a global problem, as it contributes to huge material costs and global disasters that violate the environment. Corrosion control methods used to protect equipment do not always ensure the absolute safety of the operation of oil and gas facilities. Moreover, they are quite expensive. The developed method for controlling the electrochemical parameters of aqueous solutions to combat complications during the operation of oil-field pipelines provides the necessary protection against corrosion. The method is economical and environmentally friendly, since it does not require the use of chemical reagents. The test results have shown a very high efficiency in dealing with complications in oil fields.


2019 ◽  
Vol 154 ◽  
pp. 36-48 ◽  
Author(s):  
Clara. Escrivà-Cerdán ◽  
Steve W. Ooi ◽  
Gaurav R. Joshi ◽  
Roberto Morana ◽  
H.K.D.H. Bhadeshia ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3788
Author(s):  
Henryk Kania ◽  
Mariola Saternus ◽  
Jan Kudláček

The paper presents results of studies on the impact of bismuth and tin additions to the Zn-AlNi bath on microstructure and corrosion resistance of hot dip galvanizig coatings. The structure at high magnifications on the top surface and cross-section of coatings received in the Zn-AlNiBiSn bath was revealed and the microanalysis EDS (energy dispersion spectroscopy) of chemical composition was determined. The corrosion resistance of the coatings was tested relatively in a neutral salt spray test (NSS), and tests in a humid atmosphere containing SO2. Electrochemical parameters of coatings corrosion were determined. It was found that Zn-AlNiBiSn coatings show lower corrosion resistance in comparison with the coatings received in the Zn-AlNi bath without Sn and Bi alloying additions. Structural research has shown the existence of precipitations of Sn-Bi alloy in the coating. It was found that Sn-Bi precipitations have more electropositive potential in relation to zinc, which promotes the formation of additional corrosion cells.


2019 ◽  
Author(s):  
Christopher Ozigagu ◽  
Ting Zhou ◽  
Stephen Sanders ◽  
Teresa Golden

Corrosion and gas hydrate formation are flow assurance problems that can cause serious safety problems in deep water environments. One aspect that has been given less attention is the corrosion behavior of materials in salinity environment where gas hydrate formation and CO2 (sweet) corrosion can both occur. This type of environment is common in oil and gas deep water environments. The aim of this work is to investigate the effects of CO2-saturated salinity environment on Ni-Mo alloys at gas hydrate formation temperatures using electrochemical, SEM/EDX, and XRD surface characterization techniques. The immersion test solutions were sweet low-salinity (CO2 + 1 wt% salt + 5 oC) and sweet high- salinity (CO2 + ~24 wt% salt + 5 oC) environments, respectively. The as-deposited Ni-Mo alloy coating has the highest corrosion resistance of 33.28 kΩ cm2. The corrosion resistance dropped to 14.36 kΩ cm2 and 11.11 kΩ cm2 after 20 hrs of immersion in the sweet low-salinity and sweet high-salinity test solutions respectively. From grazing incidence XRD, the (111) reflection peak of the Ni-Mo coating was depressed and broaden after immersion in both test solutions due to increase in oxide layer formation on the surface of the Ni-Mo coating. SEM revealed a cracked surface morphology after immersion in sweet high-salinity test solution and elemental analysis shows the presence of oxygen after immersion in both test solutions. The oxygen content increased from 1.70 wt% after immersion in sweet low-salinity test solution to 2.37 wt% after immersion in sweet high-salinity test solution.


Sign in / Sign up

Export Citation Format

Share Document