scholarly journals The novel trend of bacterial cellulose as biodegradable and oxygen scavenging films for food packaging application : An integrative review

2021 ◽  
Vol 807 (2) ◽  
pp. 022066
Author(s):  
I Kamaruddin ◽  
A Dirpan ◽  
F Bastian
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Alexandra Mocanu ◽  
Gabriela Isopencu ◽  
Cristina Busuioc ◽  
Oana-Maria Popa ◽  
Paul Dietrich ◽  
...  

AbstractThis study aimed to obtain possible materials for future antimicrobial food packaging applications based on biodegradable bacterial cellulose (BC). BC is a fermentation product obtained by Gluconacetobacter xylinum using food or agricultural wastes as substrate. In this work we investigated the synergistic effect of zinc oxide nanoparticles (ZnO NPs) and propolis extracts deposited on BC. ZnO NPs were generated in the presence of ultrasounds directly on the surface of BC films. The BC-ZnO composites were further impregnated with ethanolic propolis extracts (EEP) with different concentrations.The composition of raw propolis and EEP were previously determined by gas-chromatography mass-spectrometry (GC-MS), while the antioxidant activity was evaluated by TEAC (Trolox equivalent antioxidant capacity). The analysis methods performed on BC-ZnO composites such as scanning electron microscopy (SEM), thermo-gravimetrically analysis (TGA), and energy-dispersive X-ray spectroscopy (EDX) proved that ZnO NPs were formed and embedded in the whole structure of BC films. The BC-ZnO-propolis films were characterized by SEM and X-ray photon spectroscopy (XPS) in order to investigate the surface modifications. The antimicrobial synergistic effect of the BC-ZnO-propolis films were evaluated against Escherichia coli, Bacillus subtilis, and Candida albicans. The experimental results revealed that BC-ZnO had no influence on Gram-negative and eukaryotic cells.


2021 ◽  
Author(s):  
Nasser H. Mohammad ◽  
gamal Mohamed elsherbiny ◽  
Ali A. Hammad ◽  
Ahmed A. Askar ◽  
Salwa A. Abou El Nour

Abstract Antibacterial coatings based on bacterial cellulose (BC) have been widely used in many fields including food packaging and wound dressing. In this study, we aimed to synthesis of colloidal AgNPs and BC/ AgNP composite by using BC as a reducing and capping agent in one step reaction induced by gamma-ray. Bacterial strain Komagataeibacter rhaeticus N1 MW322708 was used for biosynthesis BC by inoculation on Hestrin and Schramm medium and incubated statically at 35 °C for 10 days. BC sheet was formed, harvested, purified, and dried, then used for the synthesis of AgNPs and BC/AgNP by soaked 0.05 g of dried BC in 10ml of 1mM aqueous AgNO3 solution for 2h and then irradiated by gamma-ray under different doses. Color change from yellow to deep brown indicated the synthesis of AgNPs and BC/AgNP. The optical spectra of synthesized AgNPs revealed that the surface plasmon resonance was localized around 420 nm. DLS analysis showed that the mean diameter of AgNPs was 49.5 nm with a -19.36-mV value of zeta potential. TEM images revealed the spherical shape of synthesized AgNPs. The results of FESEM, FTIR, and XRD confirmed the formation of BC/AgNO3 composite. The highly crystalline nature of the BC membrane and BC/AgNP composite was observed in XRD measurements with a crystal size of 5.416 and 5.409 nm, respectively. The antibacterial activity of BC and BC/AgNP against pathogenic bacterial isolated from Pastirma food samples revealed that BC does not show antibacterial activity, while BC/AgNP composite showed antibacterial potency against Staphylococcus aureus, Enterococcus faecalis, Listeria monocytogenes, Proteus mirabilis, and Escherichia coli, with an inhibition zone of (mm) 9±1, 9±0.57, 10±1.15, 8±0.5 and 7±0.28, respectively. We concluded that this novel method presented in this paper offers a promising route for both AgNPs and BC/AgNP composites synthesis using a green, renewable biopolymer as a multifunctional agent and potential to be applied in the future development of food packing, biomedical instruments, and therapeutics.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 9569-9574
Author(s):  
Marta Kaźmierczak ◽  
Tomasz P. Olejnik ◽  
Magdalena Kmiotek

In some respects the safest food packaging material is paper that is completely free of chemical additives, made only from primary cellulosic fibers. There is no information in the literature on giving paper barrier properties using nanocellulose without any additives, especially bacterial cellulose, by applying a coating to a fibrous semi-product. In order to prepare paper-layered composites, paper sheets made of beaten or non-beaten softwood or hardwood cellulose pulp, or their 50/50 (wt./wt.) mix, were used in the experiment. After the application of bacterial cellulose onto the sheets, the paper became completely impermeable to air, which means that fine microbial fibers had filled the voids (pores) between plant cellulose fibers. The results of the experiment could be regarded as a perfect, biodegradable packaging material.


2020 ◽  
Vol 33 (8) ◽  
pp. 321-332 ◽  
Author(s):  
Bambang Kuswandi ◽  
Ni P.N. Asih ◽  
Dwi K. Pratoko ◽  
Nia Kristiningrum ◽  
Mehran Moradi

Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 674 ◽  
Author(s):  
Sabina Galus ◽  
Emine Aytunga Arik Kibar ◽  
Małgorzata Gniewosz ◽  
Karolina Kraśniewska

The development of edible films and coatings has seen remarkable growth in recent decades and is expected to have an important impact on the quality of food products in the coming years. This growth is attributed to the increasing knowledge of edible films and edible coating technology, as well as advances in material science and processing technology. Packaging is used in order to reduce synthetic packaging and can play a role as an eco-friendly biodegradable package or a protective coating on the food surface. A large amount of bio-based polymers have been used in the production of edible films and coatings. Novel sources of edible materials, as well as the novel processing techniques, are a subject of great interest due to their promising potential as innovative food packaging systems. This paper presents the concept and potential for application of new film-forming materials and management of food wastes from the fruit and vegetable industry, which can encounter problems in appropriate disposal. It summarizes the extensive knowledge about the new film-forming materials such as plant residues, flours and gums to show their protective effectiveness and suitability in various types of foods.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 262 ◽  
Author(s):  
Adriane Cherpinski ◽  
Piotr Szewczyk ◽  
Adam Gruszczyński ◽  
Urszula Stachewicz ◽  
Jose Lagaron

The main goal of this study was to obtain, for the first time, highly efficient water barrier and oxygen-scavenging multilayered electrospun biopaper coatings of biodegradable polymers over conventional cellulose paper, using the electrospinning coating technique. In order to do so, poly(3-hydroxybutyrate) (PHB) and polycaprolactone (PCL) polymer-containing palladium nanoparticles (PdNPs) were electrospun over paper, and the morphology, thermal properties, water vapor barrier, and oxygen absorption properties of nanocomposites and multilayers were investigated. In order to reduce the porosity, and to enhance the barrier properties and interlayer adhesion, the biopapers were annealed after electrospinning. A previous study showed that electrospun PHB-containing PdNP did show significant oxygen scavenging capacity, but this was strongly reduced after annealing, a process that is necessary to form a continuous film with the water barrier. The results in the current work indicate that the PdNP were better dispersed and distributed in the PCL matrix, as suggested by focus ion beam-scanning electron microscopy (FIB-SEM) experiments, and that the Pd enhanced, to some extent, the onset of PCL degradation. More importantly, the PCL/PdNP nanobiopaper exhibited much higher oxygen scavenging capacity than the homologous PHB/PdNP, due to most likely, the higher oxygen permeability of the PCL polymer and the somewhat higher dispersion of the Pd. The passive and active multilayered biopapers developed here may be of significant relevance to put forward the next generation of fully biodegradable barrier papers of interest in, for instance, food packaging.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 735
Author(s):  
Cesare Rovera ◽  
Filippo Fiori ◽  
Silvia Trabattoni ◽  
Diego Romano ◽  
Stefano Farris

Bacterial cellulose nanocrystals (BCNCs) obtained by enzymatic hydrolysis have been loaded in pullulan biopolymer for use as nanoparticles in the generation of high-oxygen barrier coatings intended for food packaging applications. Bacterial cellulose (BC) produced by Komagataeibacter sucrofermentans was hydrolyzed by two different enzymatic treatments, i.e., using endo-1,4-β-glucanases (EGs) from Thermobifida halotolerans and cellulase from Trichoderma reesei. The hydrolytic activity was compared by means of turbidity experiments over a period of 145 h, whereas BCNCs in their final state were compared, in terms of size and morphology, by atomic force microscopy (AFM) and dynamic light scattering (DLS). Though both treatments led to particles of similar size, a greater amount of nano-sized particles (≈250 nm) were observed in the system that also included cellulase enzymes. Unexpectedly, transmission electron microscopy (TEM) revealed that cellulose nanoparticles were round-shaped and made of 4–5 short (150–180 nm) piled whiskers. Pullulan/BCNCs nanocomposite coatings allowed an increase in the overall oxygen barrier performance, of more than two and one orders of magnitude (≈0.7 mL·m−2·24 h−1), of pure polyethylene terephthalate (PET) (≈120 mL·m−2·24 h−1) as well as pullulan/coated PET (≈6 mL·m−2·24 h−1), with no significant difference between treatments (hydrolysis mediated by EGs or with the addition of cellulase). BCNCs obtained by enzymatic hydrolysis have the potential to generate high oxygen barrier coatings for the food packaging industry.


Sign in / Sign up

Export Citation Format

Share Document