scholarly journals Diagnostics of the critical axial displacement of the sectional pump shaft in the conditions of kimberlite mines

2021 ◽  
Vol 848 (1) ◽  
pp. 012123
Author(s):  
N P Ovchinnikov
2018 ◽  
pp. 48-51
Author(s):  
Sh.U. Yuldashev ◽  
D.T. Abdumuminova

The article provides an overview of the principle of the pump D630-90, as well as methods for studying the real conditions of technical support to improve maintainability and optimize technological processes and systems. A technological process for the restoration of the shaft of a centrifugal water pump has been developed and an algorithm for managing it has been proposed, on the basis of which the system for energy-efficient management of the recovery area has been implemented. Also in the article some questions of use, metal-filled compound SK812, and also application of ultrasonic processing of a surface of a shaft of the centrifugal water pump of mark D630-90 are mentioned and considered. The developed technological process of pump shaft restoration showed that it is characterized by simplicity, it fits well into the production process of repair and can be widely used in repair shops.


2013 ◽  
Vol 416-417 ◽  
pp. 428-432
Author(s):  
Li Shan ◽  
Xiao Wei Cheng ◽  
Yong Fang ◽  
Xiao Hua Bao

This paper investigates the vibration which caused by electromagnetic on the stator end-winding of the large dry submersible motor. Firstly, the electromagnetic field which included transition state and steady state is researched by 3-D FEM. Secondly, the electromagnetic force which lead to vibrations of end-winding is calculated by numerical method, it can be obtained that where endured the largest force density along the slant part of end-winding. Finally, the radial displacement and the axial displacement of the slant part which caused by vibrations is studied, the analysis results show that the axial displacement is larger than the amplitude of radial displacement. It indicates that the slant part of end-winding will be more easily damaged at axial direction than radial direction.


2000 ◽  
Vol 7 (5) ◽  
pp. 333-346 ◽  
Author(s):  
A.M Lancha ◽  
J Lapeña ◽  
M Serrano ◽  
I Gorrochategui
Keyword(s):  

2000 ◽  
Author(s):  
H. S. Tzou ◽  
J. H. Ding ◽  
W. K. Chai

Abstract Piezoelectric laminated distributed systems have broad applications in many new smart structures and structronic systems. As the shape control becomes an essential issue in practical applications, the nonlinear large deformation has to be considered, and thus, the geometrical nonlinearity has to be incorporated. Two electromechanical partial differential equations, one in the axial direction and the other in the transverse direction, are derived for the nonlinear PZT laminated beam model. The conventional approach is to neglect the axial oscillation and distributed sensing and control of the distributed laminated beam is evaluated, excluding the effect of axial oscillation. In this paper, influence of the axial displacement to the dynamics and distributed control effect is evaluated. Analysis results reveal that the axial displacement, indeed, has significant influence to the dynamic and distributed control responses of the nonlinear distributed PZT laminated beam structronics systems.


1991 ◽  
Vol 70 (4) ◽  
pp. 1447-1455 ◽  
Author(s):  
A. De Troyer

To assess the relative contributions of the different groups of inspiratory intercostal muscles to the cranial motion of the ribs in the dog, we have measured the axial displacement of the fourth rib and recorded the electromyograms of the parasternal intercostal, external intercostal, and levator costae in the third interspace in 15 anesthetized animals breathing at rest. In eight animals, the parasternal intercostals were denervated in interspaces 1-5. This procedure caused a marked increase in the amount of external intercostal and levator costae inspiratory activity, and yet the inspiratory cranial motion of the rib was reduced by 55%. On the other hand, the external intercostals in interspaces 1-5 were sectioned in seven animals, and the reduction in the cranial rib motion was only 22%; the amount of parasternal and levator costae activity, however, was unchanged. When the parasternals in these animals were subsequently denervated, the levator costae inspiratory activity increased markedly, but the inspiratory cranial motion of the rib was abolished or reversed into an inspiratory caudal motion. These studies thus confirm that, in the dog breathing at rest, the parasternal intercostals have a larger role than the external intercostals and levator costae in causing the cranial motion of the ribs during inspiration. A quantitative analysis suggests that the parasternal contribution is approximately 80%.


Author(s):  
Friedrich-Karl Benra ◽  
Hans Josef Dohmen ◽  
Oliver Schneider

The extreme vibrations of sewage water pumps with single-blade impellers are induced mainly by interaction of the flow in the impeller and the casing. The resulting periodically unsteady forces affect the impeller and produce radial deflections of the pump shaft. These oscillations of the rotor are transferred to the pump casing and attached pipes. They can be recognized as vibrations at the bearing blocks or at the pump casing. The present contribution describes the investigation of the transient flow in a sewage water pump. The three-dimensional, viscous, unsteady flow in a pump with a single blade impeller is determined by numerical simulation. After that the hydrodynamic stimulation forces are calculated from the so known transient flow field. The forces can be classified into pressure and friction forces. The pressure forces usually exceed the friction forces on several orders of magnitude. A separate view on the fluid-wetted impeller surfaces shows that the pressure forces acting on the blade are clearly larger than the forces at the hub and at the shroud. So they are decisive for the vibration amplitudes of single-blade sewage water pumps. By a following dynamic analysis of the pump rotor using a commercial Finite-Element-Method (FEM) the resulting vibration amplitudes are determined for several operating points. With the known pressure field and the calculated vibration amplitudes the vibration behavior of sewage water pumps can be influenced during the design by changing the relevant construction parameters.


2019 ◽  
Vol 34 (5) ◽  
pp. 1098-1104 ◽  
Author(s):  
Kyung-Ho Ko ◽  
Yoon-Hyuk Huh ◽  
Chan-Jin Park ◽  
Lee-Ra Cho

Sign in / Sign up

Export Citation Format

Share Document