scholarly journals Performance Comparison of CPC based solar installations at different locations in India and analysis of variation pattern

2021 ◽  
Vol 850 (1) ◽  
pp. 012039
Author(s):  
Anagha Pathak ◽  
Anand Bhosle ◽  
Pravin Baste ◽  
Niranjan Kurhe ◽  
Nitin Suryawanshi ◽  
...  

Abstract Currently the industrial heat demand is met by using expensive fossil fuels. Exclusive use of solar energy is not feasible due to the fluctuating pattern of solar radiation intensity. Solar hybridization with the existing heating system can be an appropriate solution to meet the process heat requirement of many industries. Concentrator Solar Thermal (CST) technologies can generate the medium temperature heat required for industrial processes. The present study was undertaken with an objective of comparing and analyzing the designed performance of the solar fields using the Compound Parabolic Concentrator (CPC) technology against the actual measured performance values for boiler feed water preheating application at two different locations in India. The optical efficiency of the CPC collector, 64.8%, obtained when tested as per part 5 of IS 16648:2017 was used for designing the solar fields as per the daily heat requirement. The performance of the installations at both the locations was monitored for a period of five months. The observed variation in the performance of each installation than the designed performance was compared and analyzed for the causes. The average variation in designed and measured performance was in the range of 9.0% to 9.8% for location 1 and 2 respectively, attributing to heat rejection from the collector attachments and fluid transfer lines, dust effect on the absorber and reflector of CPC, instrument’s uncertainty, other losses due to shadow effect, vacuum loss from the tubes, dislocation of tubes, heat removal and usage pattern etc. The reasons of the losses from both the fields were of the similar nature, which should be taken into account to design a solar thermal system to achieve predicted performance near to the designed performance. Preheating of boiler feed water is one of the potential applications of solar CPC technology.

Feasibility study of Concentrated Solar Thermal Steam Cooking System has performed for climatic conditions of Delhi by taking the case of DTU boys hotel mess to replace LPG cooking system. Energy requirement for mass cooking in DTU mess is calculated to be 288981 KWh which till now is fulfilled by 15 LPG cylinders each of capacity of 14kg. An attempt is made to fulfill this requirement with solar energy using Scheffler Dish, although it is also known that complete energy requirement cannot be fulfilled due to unavailability of solar radiations at night, in monsoon and sometimes in winter. Almost 50% of energy requirement i.e.143880 KWh can meet by this system using 25 Scheffler Dish of 16m2. Calculations for CO2 emission due to burning of LPG in DTU hostel mess is also done which comes out to be 189 tonne and it is shown that with implementation of such a cooking system almost 50% of CO2 emission can be controlled. Effect of DNI, optical efficiency and temperature difference of feed water and steam is shown in this work. Cost of this project that is bear by DTU is around 62 lakhs with payback period of 2.84 years. This system has proposed with keeping in mind that it could prove a model to encourage other institutions in Delhi for implementing this technology for mass and collective cooking.


2021 ◽  
Vol 12 (2) ◽  
pp. 232-256
Author(s):  
Yacob Gebreyohannes ◽  
Mulu Bayray ◽  
Johan Lauwaert

A substantial share of the total energy in various countries is consumed by industries and manufacturing sectors. Most of the energy is used for low and medium temperature process heating (up to 3000C) as well as low and medium cooling capacity (up to 350kW). To meet the demand, the industrial sector consumes most of its energy in either thermal (heat) or electrical energy forms. The use of fossil fuels accounts for about half of the overall share. This resulted in a necessity to commercialize local and clean renewable energy sources efficiently considering the reduction of economic dependence on fossil fuels and greenhouse gases emission. As such, solar energy has proven potential and resulted in considerable development and deployment of solar heating industrial processes (SHIP) and solar cooling systems in recent times. Thus, an attempt to present a review of the available literature on overall energy intensiveness, process temperature levels, solar technology match, and solar thermal system performance and cost have been made in this paper. The review also includes identifying the potential and relevance of involving solar thermal for industrial heating and cooling demand. As a result, at least 624 SHIP including promising large-scale plants and 1350 solar cooling systems most of them in small and medium capacities in operation are identified. Though limited data is available for solar cooling potential and installation, investigations projected the global SHIP potential to 5.6 EJ for 2050. Consequently, given the presence of many low and medium temperature heating processes and cooling capacities in industries with immense solar energy potential, developing counties such as Ethiopia can take experience and pay attention to the development of sustainable industrial systems.


2021 ◽  
Vol 11 (9) ◽  
pp. 4100
Author(s):  
Rasa Supankanok ◽  
Sukanpirom Sriwong ◽  
Phisan Ponpo ◽  
Wei Wu ◽  
Walairat Chandra-ambhorn ◽  
...  

Evacuated-tube solar collector (ETSC) is developed to achieve high heating medium temperature. Heat transfer fluid contained inside a copper heat pipe directly affects the heating medium temperature. A 10 mol% of ethylene-glycol in water is the heat transfer fluid in this system. The purpose of this study is to modify inner structure of the evacuated tube for promoting heat transfer through aluminum fin to the copper heat pipe by inserting stainless-steel scrubbers in the evacuated tube to increase heat conduction surface area. The experiment is set up to measure the temperature of heat transfer fluid at a heat pipe tip which is a heat exchange area between heat transfer fluid and heating medium. The vapor/ liquid equilibrium (VLE) theory is applied to investigate phase change behavior of the heat transfer fluid. Mathematical model validated with 6 experimental results is set up to investigate the performance of ETSC system and evaluate the feasibility of applying the modified ETSC in small-scale industries. The results indicate that the average temperature of heat transfer fluid in a modified tube increased to 160.32 °C which is higher than a standard tube by approximately 22 °C leading to the increase in its efficiency by 34.96%.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2143
Author(s):  
Mishal Alsehli

The fossil fuels that power conventional desalination systems cause substantial environmental impact. Solar desalination can satisfy critical water needs with only a minimal contribution to global warming. The current work presents an attractive new design suitable for regions with limited water resources and high solar radiation rates. This work is an experimental study of a newly designed, solar-powered, multi-stage flash (MSF) desalination plant. The design could address the need to increase the limited water resources in solar energy-rich areas. The prototype consists of a solar collector, an MSF unit, and a novel dual thermal storage tank design. In this prototype, preheated brine is directly heated by circulation through the solar collector. Two tanks serve the MSF unit; one tank feeds the MSF unit while the other receives the preheated feed water. The two tanks alternate roles every 24 h. The study was conducted in Taif, Saudi Arabia, throughout the month of September 2020. The results of the experiment showed that 1.92 square meters of solar collector area is needed for an average daily production of 19.7 kg of fresh water, at a cost of approximately $0.015 per liter.


Author(s):  
A. Giostri ◽  
M. Binotti ◽  
P. Silva ◽  
E. Macchi ◽  
G. Manzolini

Parabolic trough can be considered the state of the art for solar thermal power plants thanks to the almost 30 years experience gained in SEGS and, recently, Nevada Solar One plants in US and Andasol plants in Spain. One of the major issues that limits the wide diffusion of this technology is the high investment cost of the solar field and, particularly, of the solar collector. For this reason, since several years research activity has been trying to develop new solutions with the aim of cost reduction. This work compares commercial Fresnel technology with conventional parabolic trough plant based on synthetic oil as heat transfer fluid at nominal conditions and evaluates yearly average performances. In both technologies, no thermal storage system is considered. In addition, for Fresnel, a Direct Steam Generation (DSG) case is investigated. Performances are calculated by a commercial code, Thermoflex®, with dedicated component to evaluate solar plant. Results will show that, at nominal conditions, Fresnel technology have an optical efficiency of 67% which is lower than 75% of parabolic trough. Calculated net electric efficiency is about 19.25%, while parabolic trough technology achieves 23.6%. In off-design conditions, the gap between Fresnel and parabolic trough increases because the former is significantly affected by high radiation incident angles. The calculated sun-to-electric annual average efficiency for Fresnel plant is 10.2%, consequence of the average optical efficiency of 38.8%, while parabolic trough achieve an overall efficiency of 16%, with an optical one of 52.7%. An additional case with Fresnel collector and synthetic oil outlines differences among investigated cases. Finally, because part of performance difference between PT and Fresnel is simple due to different definitions, additional indexes are introduced in order to make a consistent comparison.


1994 ◽  
Vol 38 (7-8) ◽  
pp. 456-460 ◽  
Author(s):  
S. Vatsala ◽  
V. Bansal ◽  
D. K. Tuli ◽  
M. M. Rai ◽  
S. K. Jain ◽  
...  

2015 ◽  
Vol 24 (10) ◽  
pp. 3773-3782
Author(s):  
R. Rihan ◽  
M. Basha ◽  
A. Al-Meshari ◽  
A. Bayramov ◽  
G. van Zyl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document