scholarly journals Analysis of energy losses in a hydraulic load sensing proportional valve

2021 ◽  
Vol 868 (1) ◽  
pp. 012038
Author(s):  
S M Mirzaliev ◽  
M K Sultonov ◽  
G Lucci ◽  
A K Igamberdiyev ◽  
N А Kholikova
Author(s):  
Henrique Raduenz ◽  
Liselott Ericson ◽  
Kim Heybroek ◽  
Victor J. De. Negri ◽  
Petter Krus

This paper outlines an extended analysis on how multi-chamber actuators can improve the efficiency of valve-controlled systems. Resistive control is a major source of energy losses in valve-controlled systems that share the same pump to drive multiple loads. By combining different chambers, the load on multi-chamber actuators can be transformed into different pressure and flow rate levels. This allows the adaptation of its load to the loads on other actuators. This can lead to a reduction of resistive control energy losses that occur between pump and actuators when driven simultaneously. As a case study to highlight how the system efficiency can be improved, a load sensing system with a conventional and a multi-chamber actuator is analysed. The equations that describe the system steady state behaviour are presented to evaluate the effect of the load transformations on the system efficiency. A disadvantage of such architecture is the fact that load transformations result in different actuator speeds. To reduce this effect, a compensation factor for the command signal to the proportional valve is presented. The highlight from this paper is the potential for efficiency improvement enabled by the adoption of multi-chamber actuators in a valve-controlled architecture. Further research is required for the selection of number of chambers and their areas since they directly affect the system efficiency.


Author(s):  
Arnold Hießl ◽  
Rudolf Scheidl

Energy efficiency improvements are forced by steadily increasing general performance and cost saving requirements, and for mobile machines mostly by stricter governmental emission laws. Such improvements can be realized by new system architectures, like hybrids or energy recovery systems, but also by optimizing existing systems. This publication discusses the reduction of systematic losses for an existing hydraulic Load Sensing System (LSS) used in mobile working machines, especially in compact excavators. Energy losses in a LSS are proportional to the pressure difference between pump and actuator in each section. These systematic losses are investigated and can be reduced by actuator adaptation or by splitting non-correlating sections. Energy losses along the hydraulic circuit, such as pump losses hydraulic line losses and actuator losses, which are affected by these adaptations indirectly, are neglected. The investigations are founded on measurements of a 5 ton compact excavator and their systematic evaluation. The actuator adaptation can be realised by changing the excavator’s geometry and/or hydraulic specifications (cylinder areas, displacement volume). The focus of this paper is limited to the hydraulic domain. Mathematical models and operation scenarios verified by measurements were taken as the basis to find optimum system parameter configurations by mathematical optimization, employing evolutionary algorithm. This included also different groupings of LSS circuits. Boom, stick, bucket and swing were taken into account and results are shown for a one, two and three pump LSS. Considering the introduced methods an effective way for reducing systematic losses up to 40% is shown in this exemplary case.


Author(s):  
Alessandro Corvaglia ◽  
Giorgio Altare ◽  
Roberto Finesso ◽  
Massimo Rundo

Abstract In this paper, two 3D CFD models of a load sensing proportional valve are contrasted. The models were developed with two different software, Simerics PumpLinx® and ANSYS Fluent®. In both cases the mesh was dynamically modified based on the fluid forces acting on the local compensator. In the former, a specific template for valves was used, in the latter a user-defined function was implemented. The models were validated in terms of flow rate and pressure drop for different positions of the main spool by means of specific tests. Two configurations were tested: with the local compensator blocked and free to regulate. The study has brought to evidence the reliability of the CFD models in evaluating the steady-state characteristics of valves with complex geometry.


Author(s):  
Xingui Liang ◽  
Tapio Virvalo

Improving energy utilization in hydraulic booms has been an important scheme for industries and designers due to energy cost, environmental requirements, etc. This paper presents accumulator-charged drive in a Loglift boom, which is driven by Electro-hydraulic Load-Sensing (ELS) system based a micro-controller. The practical measurement and simulation are carried out for different work situations. The energy transfer process for a typical duty cycle is calculated and compared. The experimental and theoretical results show that this drive can improve energy utilization. The validation of its experiment in an example hydraulic boom will encourage its further research for possible application.


Author(s):  
Sanjar Mirzaliev ◽  
Kungratbai Sharipov

Nowadays energy saving is a topical issue due to increasing fuel costs and this aspect is amplified by more stringent emissions regulations that impact on vehicle development. A recent study conducted by the U.S. Department of Energy shows that about five percent of the U.S. energy consumption is transmitted by fluid power equipment. Nevertheless, this study also shows that the efficiency of fluid power averages 21 percent. This offers a huge opportunity to improve the current state-of-the-art of fluid power machines, in particular to improve the energy consumption of current applications. These facts dictate a continuous strive toward improvements and more efficient solutions: to accomplish this objective a strong reduction of hydraulic losses and better control strategies of the hydraulic systems are needed. In fluid power, there exist many techniques to reduce/recover energy losses of the conventional layouts, e.g. load sensing, electrohydraulic flow matching, independent metering, etc. One of the most efficient ways to analyze these different layouts and identify the best hydraulic solution is done through virtual simulations instead of prototyping, since the latter involves higher investment costs to deliver the product into the market. However, to build a fluid power machine virtual model, some problems arise relative to different aspects, for instance: loads on actuators (both linear and rotational) are not constant and pumps are driven by a real engine whose speed depends on required torque. Furthermore, it is important to achieve higher level of detail to simulate each component in the circuit: the greater detail, the better the machine behavior is portrayed, but it obviously entails heavy impact on simulation time and computational resources. Therefore, there is a need to create mathematical model of components and systems with sufficient level of detail to easily acquire all those phenomena necessary to correctly evaluate machine performance and make modifications to the fluid power component design. In this context, a hydraulic proportional valve PVG 32 by Danfoss is taken as an object of study, its performance is analyzed with suitable mathematical model and simulation is done to observe closeness of a model to the laboratory experiment.


2020 ◽  
Author(s):  
Alexander Mitov ◽  
Tsonyo Slavov ◽  
Jordan Kralev ◽  
Ilcho Angelov

Author(s):  
Robert Braun ◽  
Liselott Ericson ◽  
Petter Krus

A major concern in the forest industry is impact on the soil caused by forest machines during harvesting. A six-wheel pendulum arm forwarder is being developed. The new forwarder aims at reducing soil damage by an even pressure distribution and smooth torque control and thereby also improving the working environment. The suspension contains pendulum arms on each wheel controlled by a hydraulic load sensing system in combination with accumulator. A natural approach is to model each part of a system in the best-suited software. In this case, the hydraulic system is modelled in the Hopsan simulation tool, while the vehicle mechanics is modelled in Adams. To understand the whole system it is necessary to simulate all subsystems together. An open standard for this is the Functional Mock-up Interface. This makes it possible to investigate the interaction between the hydraulic system and the multi-body mechanic model. This paper describes how different simulation tools can be combined to support the development process. The technique is applied to the forwarder’s pendulum suspension. Controllers for height and soil force are optimized to minimize soil damage and maximize comfort for the operator.


Sign in / Sign up

Export Citation Format

Share Document