scholarly journals Peatland conservation strategies and carbon pricing possibilities for climate change mitigation in Indonesia: a review

2021 ◽  
Vol 892 (1) ◽  
pp. 012061
Author(s):  
N Pertiwi ◽  
T W Tsusaka ◽  
N Sasaki ◽  
E Gunawan

Abstract Humankind is digging to solve one of the world’s most complex issues at present, climate change. Many studies were conducted and initiatives were proposed as mitigation and adaptation strategies to date, such as restoration and preservation of carbon storage. Peatlands are widely recognized as the largest natural carbon storage of all terrestrial ecosystems. Peatlands can help mitigate climate change by its ability to sequestrate huge amounts of carbon and maintain water balance. This valuable yet vulnerable ecosystem needs to be managed properly to maintain the functions. This study aimed to critically review the peatland conservation strategies and possibility of carbon pricing for mitigation and adaptation of climate change, specifically for Indonesia. It was revealed that restoration strategies such as rewetting, revegetation, and revitalization could help with peatlands conservation and further reduction in emissions from land sectors. However, the funding for conservation activities would become a hindrance to the viability and sustainability. Carbon pricing could be a potentially effective approach to conservation of peatlands. Sequestrated carbon and potential additional value from ecosystem services could higher up the price that made the option for conservation more stunning. Therefore, to establish tradable carbon credits on peatland as a means to support the sustainability of Indonesia’s peatland conservation in the future, the action to well managing and standardizing the carbon credits should be started immediately. Though the process will take time and great willingness from all parties, this option could be used for long-term peatland conservation activities.

2019 ◽  
Vol 88 (2) ◽  
pp. 29-49 ◽  
Author(s):  
Dirk Heine ◽  
Willi Semmler ◽  
Mariana Mazzucato ◽  
João Paulo Braga ◽  
Michael Flaherty ◽  
...  

Summary: To finance the transition to low-carbon economies required to mitigate climate change, countries are increasingly using a combination of carbon pricing and green bonds. This paper studies the reasoning behind such policy mixes and the economic interaction effects that result from these different policy instruments. We model these interactions using an intertemporal model, related to Sachs (2015), which proposes a burden sharing between current and future generations. The issuance of green bonds helps to enable immediate investment in climate change mitigation and adaptation, and the bonds would be repaid by future generations in such a way that those who benefit from reduced future environmental damage share in the burden of financing mitigation efforts undertaken today. We examine the effects of combining green bonds and carbon pricing in a three-phase model. We are using a numerical solution procedure which allows for finite-horizon solutions and phase changes. We show that green bonds perform better when they are combined with carbon pricing. Our proposed policy option appears to be politically more feasible than a green transition based only on carbon pricing and is more prudent for debt sustainability than a green transition that relies overly on green bonds.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7333 ◽  
Author(s):  
José Maria Cardoso da Silva ◽  
Alessandro Rapini ◽  
Luis Cláudio F. Barbosa ◽  
Roger R. Torres

In a world where changes in land cover and climate happen faster than ever due to the expansion of human activities, narrowly distributed species are predicted to be the first to go extinct. Studies projecting species extinction in tropical regions consider either habitat loss or climate change as drivers of biodiversity loss but rarely evaluate them together. Here, the contribution of these two factors to the extinction risk of narrowly distributed species (with ranges smaller than 10,000 km2) of seed plants endemic to a fifth-order watershed in Brazil (microendemics) is assessed. We estimated the Regional Climate Change Index (RCCI) of these watersheds (areas with microendemics) and projected three scenarios of land use up to the year 2100 based on the average annual rates of habitat loss in these watersheds from 2000 to 2014. These scenarios correspond to immediate conservation action (scenario 1), long-term conservation action (scenario 2), and no conservation action (scenario 3). In each scenario, areas with microendemics were classified into four classes: (1) areas with low risk, (2) areas threatened by habitat loss, (3) areas threatened by climate change, and (4) areas threatened by climate change and habitat loss. We found 2,354 microendemic species of seed plants in 776 areas that altogether cover 17.5% of Brazil. Almost 70% (1,597) of these species are projected to be under high extinction risk by the end of the century due to habitat loss, climate change, or both, assuming that these areas will not lose habitat in the future due to land use. However, if habitat loss in these areas continues at the prevailing annual rates, the number of threatened species is projected to increase to more than 85% (2,054). The importance of climate change and habitat loss as drivers of species extinction varies across phytogeographic domains, and this variation requires the adoption of retrospective and prospective conservation strategies that are context specific. We suggest that tropical countries, such as Brazil, should integrate biodiversity conservation and climate change policies (both mitigation and adaptation) to achieve win-win social and environmental gains while halting species extinction.


2012 ◽  
Vol 9 (3) ◽  
pp. 4025-4066 ◽  
Author(s):  
S. Piao ◽  
A. Ito ◽  
S. Li ◽  
Y. Huang ◽  
P. Ciais ◽  
...  

Abstract. This REgional Carbon Cycle Assessment and Processes regional study provides a synthesis of the carbon balance of terrestrial ecosystems in East Asia, a region comprised of China, Japan, North- and South-Korea, and Mongolia. We estimate the current terrestrial carbon balance of East Asia and its driving mechanisms during 1990–2009 using three different approaches: inventories combined with satellite greenness measurements, terrestrial ecosystem carbon cycle models and atmospheric inversion models. The magnitudes of East Asia's natural carbon sink from these three approaches are comparable: −0.264 ± 0.033 Pg C yr−1 from inventory-remote sensing model-data fusion approach, −0.393 ± 0.141 Pg C yr−1 (not considering biofuel emissions) or −0.204 ± 0.141 Pg C yr−1 (considering biofuel emissions) for carbon cycle models, and −0.270 ± 0.507 Pg C yr−1 for atmospheric inverse models. The ensemble of ecosystem modeling based analyses further suggests that at the regional scale, climate change and rising atmospheric CO2 together resulted in a carbon sink of −0.289 ± 0.135 Pg C yr−1, while land use change and nitrogen deposition had a contribution of −0.013 ± 0.029 Pg C yr−1 and −0.107 ± 0.025 Pg C yr−1, respectively. Although the magnitude of climate change effects on the carbon balance varies among different models, all models agree that in response to climate change alone, southern China experienced an increase in carbon storage from 1990 to 2009, while northern East Asia including Mongolia and north China showed a decrease in carbon storage. Overall, our results suggest that about 13–26% of East Asia's CO2 emissions from fossil fuel burning have been offset by carbon accumulation in its terrestrial ecosystems over the period from 1990 to 2009. The underlying mechanisms of carbon sink over East Asia still remain largely uncertain, given the diversity and intensity of land management processes, and the regional conjunction of many drivers such as nutrient deposition, climate, atmospheric pollution and CO2 changes, which cannot be considered as independent for their effects on carbon storage.


2021 ◽  
Author(s):  
Amrit Kumar Mishra ◽  
Deepak Apte ◽  
Syed Hilal Farooq

Abstract Ecologically connected ecosystems are considered more resilient to climate change mitigation by storing increased amounts of carbon than individual ecosystems. This study quantified the carbon storage capacity of seagrass (Thalassia hemprichii) meadows that are adjacent to mangroves (MG; Rhizophora apiculate) and without mangroves (WMG) at three locations in tropical Andaman and Nicobar Islands (ANI) of India. The sediment organic matter (OM) carbon (Corg) content was 2-fold higher at the MG sites than WMG sites of all three locations within the top 10 cm. The Corg in the total biomass was higher at MG sites than the biomass at WMG sites. The sediment grain size positively influenced the sediment OM and Corg content. The canopy height of T. hemprichii showed a better relationship with sediment OM and Corg at MG sites. In contrast, the shoot density of T. hemprichii showed a better relationship with sediment OM and Corg at WMG sites. The total carbon in 144 ha of T. hemprichii meadows of all three MG sites was 11031± 5223 Mg C, whereas the carbon in 148 ha of WMG sites was 4921±3725 Mg C. These T. hemprichii meadows of ANI store around 40487±19171 ton of CO2 in the MG sites and 18036 ±13672 ton of CO2 at WMG sites. The social cost of these carbon stored in these T. hemprichii meadows is around US$ 34.82 and 1.5 million at the MG and WMG sites, respectively. This study points out the efficiency of seagrass ecosystems of ANI as carbon sinks and the potential of these connected seascapes in increasing the efficiency of seagrass carbon storage. Therefore, this connectivity approach should be further explored to include these connected ecosystems of India as a nature-based solution for climate change mitigation and adaptation plans.


2012 ◽  
Vol 9 (9) ◽  
pp. 3571-3586 ◽  
Author(s):  
S. L. Piao ◽  
A. Ito ◽  
S. G. Li ◽  
Y. Huang ◽  
P. Ciais ◽  
...  

Abstract. This REgional Carbon Cycle Assessment and Processes regional study provides a synthesis of the carbon balance of terrestrial ecosystems in East Asia, a region comprised of China, Japan, North and South Korea, and Mongolia. We estimate the current terrestrial carbon balance of East Asia and its driving mechanisms during 1990–2009 using three different approaches: inventories combined with satellite greenness measurements, terrestrial ecosystem carbon cycle models and atmospheric inversion models. The magnitudes of East Asia's terrestrial carbon sink from these three approaches are comparable: −0.293±0.033 PgC yr−1 from inventory–remote sensing model–data fusion approach, −0.413±0.141 PgC yr−1 (not considering biofuel emissions) or −0.224±0.141 PgC yr−1 (considering biofuel emissions) for carbon cycle models, and −0.270±0.507 PgC yr−1 for atmospheric inverse models. Here and in the following, the numbers behind ± signs are standard deviations. The ensemble of ecosystem modeling based analyses further suggests that at the regional scale, climate change and rising atmospheric CO2 together resulted in a carbon sink of −0.289±0.135 PgC yr−1, while land-use change and nitrogen deposition had a contribution of −0.013±0.029 PgC yr−1 and −0.107±0.025 PgC yr−1, respectively. Although the magnitude of climate change effects on the carbon balance varies among different models, all models agree that in response to climate change alone, southern China experienced an increase in carbon storage from 1990 to 2009, while northern East Asia including Mongolia and north China showed a decrease in carbon storage. Overall, our results suggest that about 13–27% of East Asia's CO2 emissions from fossil fuel burning have been offset by carbon accumulation in its terrestrial territory over the period from 1990 to 2009. The underlying mechanisms of carbon sink over East Asia still remain largely uncertain, given the diversity and intensity of land management processes, and the regional conjunction of many drivers such as nutrient deposition, climate, atmospheric pollution and CO2 changes, which cannot be considered as independent for their effects on carbon storage.


2019 ◽  
Author(s):  
Edward John Roy Clarke ◽  
Anna Klas ◽  
Joshua Stevenson ◽  
Emily Jane Kothe

Climate change is a politically-polarised issue, with conservatives less likely than liberals to perceive it as human-caused and consequential. Furthermore, they are less likely to support mitigation and adaptation policies needed to reduce its impacts. This study aimed to examine whether John Oliver’s “A Mathematically Representative Climate Change Debate” clip on his program Last Week Tonight polarised or depolarised a politically-diverse audience on climate policy support and behavioural intentions. One hundred and fifty-nine participants, recruited via Amazon MTurk (94 female, 64 male, one gender unspecified, Mage = 51.07, SDage = 16.35), were presented with either John Oliver’s climate change consensus clip, or a humorous video unrelated to climate change. Although the climate change consensus clip did not reduce polarisation (or increase it) relative to a control on mitigation policy support, it resulted in hyperpolarisation on support for adaptation policies and increased climate action intentions among liberals but not conservatives.


Author(s):  
S. A. Lysenko

The spatial and temporal particularities of Normalized Differential Vegetation Index (NDVI) changes over territory of Belarus in the current century and their relationship with climate change were investigated. The rise of NDVI is observed at approximately 84% of the Belarus area. The statistically significant growth of NDVI has exhibited at nearly 35% of the studied area (t-test at 95% confidence interval), which are mainly forests and undeveloped areas. Croplands vegetation index is largely descending. The main factor of croplands bio-productivity interannual variability is precipitation amount in vegetation period. This factor determines more than 60% of the croplands NDVI dispersion. The long-term changes of NDVI could be explained by combination of two factors: photosynthesis intensifying action of carbon dioxide and vegetation growth suppressing action of air warming with almost unchanged precipitation amount. If the observed climatic trend continues the croplands bio-productivity in many Belarus regions could be decreased at more than 20% in comparison with 2000 year. The impact of climate change on the bio-productivity of undeveloped lands is only slightly noticed on the background of its growth in conditions of rising level of carbon dioxide in the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document