scholarly journals Dynamic analysis of biogas tank

2021 ◽  
Vol 906 (1) ◽  
pp. 012049
Author(s):  
Norbert Jendzelovsky ◽  
Lenka Uhlirova

Abstract Global warming is a phenomenon that makes us increasingly aware of the importance of protecting nature. Lack of drinking water and waste disposal belong to today’s biggest problem. This is the main reason why we try to recycle, use more renewable energy sources and treat waste ecologically. Drinking water tanks, sludge tanks for wastewater treatment and also tanks for biogas production, so-called fermenters, are becoming gradually more important. For built-up areas, respecting space usability, it is more appropriate to design tanks with a rectangular floor plan (so-called rectangular tanks). We can also use a system of rectangular tanks and thus achieve the most efficient use of space that is intended for them. In this article will be determined whether the proposed rectangular tank, intended for biogas production, has bearing capacity for dynamic loads. Construction of the tank itself must respect the design of the structure, as well as the building material, in order to prevent damage to its structure caused by the filling (it may also contain substances that could contaminate the environment and groundwater). This will ensure the integrity and load-bearing capacity of the tank and there is no risk of leakage. Selected tank is loaded with a standard response spectrum to see how it deforms, using finite element analysis in program ANSYS.

Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1395
Author(s):  
Marcos Sánchez ◽  
Sergio Cicero ◽  
Borja Arroyo ◽  
José Alberto Álvarez

This paper validates a methodology for the estimation of critical loads in tubular beams containing notch-type defects. The methodology is particularized for the case of Al6060-T66 tubular cantilever beams containing U-shaped notches. It consists in obtaining the stress field at the notch tip using finite element analysis (FEA) and the subsequent application of the theory of critical distances (TCD) to derive the corresponding critical load (or load-bearing capacity). The results demonstrate that this methodology provides satisfactory predictions of fracture loads.


2014 ◽  
Vol 665 ◽  
pp. 196-202
Author(s):  
Yi Qing Guo ◽  
Ping Zhou Cao

In order to study the performance of lightweight energy-saving composite floor, the finite element models of composite floor were established, which was based on the composite floor specimens test research. The finite element models were verified rationally and correctly in the paper, through compared with the composite floor test results. The finite element model can be used to analyze the load-bearing capacity of composite floor. Various influencing factors of composite floor with simply supported end were analyzed, such as the span of self-tapping screw, the diameter of self-tapping screw, the strength of thin panel and the elastic modulus of thin panel, etc. The results show that the load-bearing capacity of composite floor increases with the increase of the number of self-tapping screw, the diameter of self-tapping screw, the strength of thin panel and the elastic modulus of thin panel, etc. The load-bearing capacity calculate formula of composite floor was proposed.


2012 ◽  
Vol 204-208 ◽  
pp. 995-998
Author(s):  
Yun Yun Li ◽  
Bao Sheng Yang

This paper studies the working mechanism, ductility, and ultimate load bearing capacity of the composite columns through axial load bearing capacity experiments on eight steel skeleton-steel pipes reinforced composite concrete columns. The results show that the collaborative work between the steel pipe, steel skeleton and concrete can effectively improve the bearing capacity of the column, delay or inhibit the spread of shear diagonal cracks in the concrete and improve the ductility of the column. In addition, the finite element software ANSYS is used to digitally simulate the whole process of axial pressure test, and the resulting load-displacement curves and experimental curves agree fairly well.


2016 ◽  
Vol 2 (5) ◽  
pp. 221-225 ◽  
Author(s):  
Mahdi Bamdad ◽  
Abdolreza Sarvghad Moghadam ◽  
Mohammad Javad Mehrani

Many methods have been developed in order to study the impact behavior of solids and structures. Two common methods are finite element and experimental method. The nonlinear finite element method is one the most effective methods of predicting the behavior of RC beams from zero-load to failure and its fracture, yield and ultimate strengths. The advantage of this method is its ability to make this prediction for all sections of the assessed RC beam and all stages of loading. This paper compares the experimental results obtained for a RC frame with the numerical results calculated by ABAQUS software, and plots both sets of results as hysteresis–displacement diagrams. This comparison shows that the numerical FEM implemented via ABAQUS software produce valid and reliable results for load bearing capacity of RC frames subjected to cyclic loads, and therefore has significant cost and time efficiency advantages over the alternative approach


2022 ◽  
Vol 12 (2) ◽  
pp. 558
Author(s):  
Dragan Rakić ◽  
Milan Stojković ◽  
Damjan Ivetić ◽  
Miroslav Živković ◽  
Nikola Milivojević

The paper presents a functionality investigation of the key dam elements based on finite element analysis. A detailed analysis of filtration processes, dam strength, and the surrounding rock mass was conducted. Dam elements whose potential damage could jeopardize the normal functioning of the embankment dam have been identified. A particular emphasis was placed on the analysis of dam elements that have been identified as weak points. A numerical analysis of the impact of individual grout curtain zone failure on leakage under the dam body, a strength analysis of the overflow section, as well as the analysis of the slope stability that can compromise the functioning of the spillway have been performed. To analyze the partial stability of individual structural elements, a new measure of local stability was introduced as the remaining load-bearing capacity. As a case study, the Zavoj dam, which is a part of the Pirot reservoir system in the Republic of Serbia, was used. Investigation revealed that local damage to the grout curtain will not significantly increase leakage under the dam body, the overflow section is one of the most robust elements of the dam, but the slope above the spillway can compromise the functioning of the overflow and thus the safety of the entire dam. Based on the analysis of the results of the remaining load-bearing capacity, the dependence of the spillway capacity on earthquake intensity has been defined. The established relationship represents a surrogate model for further assessment of dynamic resilience of the complex multipurpose reservoir system, within the scope of the advanced reservoir system management.


2020 ◽  
Vol 6 ◽  
Author(s):  
Mohammad Reza Chenaghlou ◽  
Mohammad Kheirollahi ◽  
Karim Abedi ◽  
Ahmad Akbari ◽  
Aydin Fathpour

Biomimicry studies have attracted significant attention in research and practice, leading to effective engineering solutions to develop new types of structures inspired by natural systems. The objective of this study is to employ natural structures' inherent adaptivity under changing loading conditions. Three new types of compound elements are proposed that are able to improve the structure load-bearing capacity through passive inherent adaptivity. A self-centering system, inspired by the human spine, which comprises a column pre-stressed through cables, is employed as a kinematic isolator. A similar self-centering system is applied to increase the load-bearing capacity of unreinforced masonry columns. An axially loaded element, inspired by the bamboo stem, which comprises a steel core reinforced by a series of cylindrical plates that are encased in a steel tube, is employed to control the onset of instability in long-span truss structures. Application to typical frame, masonry, and truss structures is investigated through finite element analysis. Results show that the proposed compound elements are effective to increase the structure load-bearing capacity and to reduce the response under seismic excitation owning to their inherent adaptive features.


2013 ◽  
Vol 486 ◽  
pp. 84-89
Author(s):  
Petr Bouška ◽  
Radomír Pukl ◽  
Miroslav Špaček ◽  
Miroslav Vokáč ◽  
Tomáš Bittner

Loading tests of triple glazed facade panels with dimensions of 1.5 x 2.64 m were carried out. The purpose of the tests was to examine mechanical resistance of the glass panes, namely the deformations caused by a local load, to determine degree of interaction between the panes of triple glazing exposed to the loading action and to prove the load bearing capacity of the panels. This experimental investigations were accompanied by finite element analysis.


2013 ◽  
Vol 838-841 ◽  
pp. 510-513
Author(s):  
Chun Li Zhou ◽  
Ru Yang ◽  
Xue Ying Tang

Prestressed concrete-filled square steel tube truss is the kind of truss whose upper chords and lower chords are respectively concrete-filled square steel tube and prestressed square steel tube. Four truss models as square steel tube truss, concrete-filled square steel tube truss, prestressed square steel tube truss and prestressed concrete-filled square steel tube truss were analysed by ANSYS, each of those truss models’ span has three variations. The result shows that the bar sections’ strength of square steel tube truss and concrete-filled square steel tube truss are far from reaching their design strength when the allowable values of deflection has reachedl//400. Unlike the cases described above, when the bar sections’ strength of prestressed square steel tube truss and prestressed concrete-filled square steel tube truss has reached their design strength, their load-bearing capacity is 1 or 1.5 times higher than those cases above and their deflection has not reached the allowable values.


2013 ◽  
Vol 470 ◽  
pp. 1101-1104
Author(s):  
Yue Hui Li ◽  
Xiao Juan Gao ◽  
Guo Hua Zhong

Model tests of the squeezed and branch pile with or without vertical load are carried out and the horizontal load bearing capacity are studied in this paper. Based on the model test results, the influence of vertical load to squeezed and branch pile horizontal load bearing capacity and the influence of horizontal load to squeezed and branch pile vertical bearing capacity are analyzed with FEM. The analysis results show that the vertical load may increase the lateral bearing capacity of pile, and the horizontal load may decrease the vertical settlement, but horizontal load may increase the horizontal displacement and moment of the pile body and lead to instability and cracking failure. This should be pay more attention in the practical engineering.


2011 ◽  
Vol 368-373 ◽  
pp. 838-841
Author(s):  
Ya Feng Xu ◽  
Li Zhang ◽  
Jian Song

In order to analyze load bearing capacity of column with different steel tube diameters under horizontal displacement, and provide reference for further study about seismic performance of column which is called CFRP steel reinforced concrete filled with steel tube concrete column, this paper makes the nonlinear finite element analysis on this column by using ABAQUS. The load–displacement curves of the specimens with different steel tube diameters are acquired by establishing model, choosing constitutive relationship, making unit types and mesh settings, and then analyze the influence of different steel tube diameters on load bearing capacity of specimens. The curves show that with the increasing of steel tube diameters, the slope of curves in the elastic stage increases, besides, maximum point of load–displacement curves in the elastic stage is increasing. The results show that only with horizontal displacement, the slope of curves and the bearing capacity in the elastic stage is increasing with the increasing of diameters, it is clearer when the horizontal displacement is small.


Sign in / Sign up

Export Citation Format

Share Document