scholarly journals Screening of plant growth-promoting bacterial endophytes and rhizobacteria isolated from Curcuma xanthorrhiza

2021 ◽  
Vol 913 (1) ◽  
pp. 012022
Author(s):  
N A Saryanah ◽  
Y P Roswanjaya ◽  
S Himawati ◽  
Sulastri ◽  
I S Bidara ◽  
...  

Abstract Bacterial endophyte and rhizobacteria were reported to associate with medicinal plants including Zingiberaceae plants and involved in growth promotion. These beneficial bacteria are promising candidates as biostimulants because of their ability in promoting plant growth. This study aims to evaluate the activity of endophytic and rhizosphere bacteria isolated from Curcuma xanthorrhiza (Javanese turmeric) in promoting rice seedling and Javanese turmeric growth. Fifty-seven of 150 total bacterial isolates with negative hemolysis and hypersensitivity reactions were characterized to investigate their plant growth-promoting (PGP) traits. Ten selected bacteria (two bacterial endophytes and eight rhizobacteria) with multiple PGP traits were inoculated to rice seed with seed treatment and inoculated to Javanese turmeric rhizome with seed treatment and seed treatment+soil soil drenching. Our results showed that bacterial isolates tested on rice seed promoted rice seedling growth significantly. A total of five, three, six, and three bacterial isolates could increase leaf number, root length, fresh shoot weight, and fresh root weight of rice seedling (p<0.05), respectively. In contrast, all of the bacterial isolates tested on Javanese turmeric rhizomes showed a non-significant effect on the plant growth. Further studies should be considered to investigate the effect of formulated potential bacterial isolates with different application frequencies and environmental conditions on the harvest yield of rice and Javanese turmeric as well as active compounds of Javanese turmeric.

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1987
Author(s):  
Fahad Alotaibi ◽  
Soon-Jae Lee ◽  
Marc St-Arnaud ◽  
Mohamed Hijri

Phytoremediation, a method of phytomanagement using the plant holobiont to clean up polluted soils, is particularly effective for degrading organic pollutants. However, the respective contributions of host plants and their associated microbiota within the holobiont to the efficiency of phytoremediation is poorly understood. The identification of plant-associated bacteria capable of efficiently utilizing these compounds as a carbon source while stimulating plant-growth is a keystone for phytomanagement engineering. In this study, we sampled the rhizosphere and the surrounding bulk soil of Salixpurpurea and Eleocharis obusta from the site of a former petrochemical plant in Varennes, QC, Canada. Our objectives were to: (i) isolate and identify indigenous bacteria inhabiting these biotopes; (ii) assess the ability of isolated bacteria to utilize alkanes and polycyclic aromatic hydrocarbons (PAHS) as the sole carbon source, and (iii) determine the plant growth-promoting (PGP) potential of the isolates using five key traits. A total of 438 morphologically different bacterial isolates were obtained, purified, preserved and identified through PCR and 16S rRNA gene sequencing. Identified isolates represent 62 genera. Approximately, 32% of bacterial isolates were able to utilize all five different hydrocarbons compounds. Additionally, 5% of tested isolates belonging to genera Pseudomonas, Acinetobacter, Serratia, Klebsiella, Microbacterium, Bacillus and Stenotrophomonas possessed all five of the tested PGP functional traits. This culture collection of diverse, petroleum-hydrocarbon degrading bacteria, with multiple PGP traits, represents a valuable resource for future use in environmental bio- and phyto-technology applications.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sangeeta Pandey ◽  
Shikha Gupta

Abstract1-Aminocyclopropane-1-carboxylate (ACC) deaminase activity is one of the most beneficial traits of plant growth promoting (PGP) rhizobacteria responsible for protecting the plants from detrimental effects of abiotic and biotic stress. The strain S3 with ACC deaminase activity (724.56 nmol α-ketobutyrate mg−1 protein hr−1) was isolated from rhizospheric soil of turmeric (Curcuma longa), a medicinal plant, growing in Motihari district of Indian state, Bihar. The halotolerant strain S3, exhibited optimum growth at 8% (w/v) NaCl. It also exhibited multiple PGP traits such as indole acetic acid production (37.71 μg mL−1), phosphate solubilization (69.68 mg L−1), siderophore, hydrocyanic acid (HCN) and ammonia production as well as revealed antagonism against Rhizoctonia solani. The potential of isolated strain to alleviate salinity stress in tomato plants was investigated through pots trials by inoculating strain S3 through-seed bacterization, soil drenching, root dipping as well as seed treatment + soil drenching. The strain S3 inoculated through seed treatment and soil drenching method led to improved morphological attributes (root/shoot length, root/shoot fresh weight and root/shoot dry weight), photosynthetic pigment content, increased accumulation of osmolytes (proline and total soluble sugar), enhanced activities of antioxidants (Catalase and Peroxidase) and phenolic content in salt stressed tomato plants. The biochemical characterisation, FAMEs analysis and 16S rRNA gene sequencing revealed that strain S3 belongs to the genus Pseudomonas. The overall findings of the study revealed that Pseudomonas sp. strain S3 can be explored as an effective plant growth promoter which stimulate growth and improve resilience in tomato plants under saline condition.


2018 ◽  
Vol 17 (5) ◽  
pp. 101-110 ◽  
Author(s):  
Agata Goryluk-Salmonowicz ◽  
Aleksandra Orzeszko-Rywka ◽  
Monika Piórek ◽  
Hanna Rekosz-Burlaga ◽  
Adrianna Otłowska ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 912
Author(s):  
Shuming Liu ◽  
Hongmei Liu ◽  
Rui Chen ◽  
Yong Ma ◽  
Bo Yang ◽  
...  

Miscanthus spp. are energy plants and excellent candidates for phytoremediation approaches of metal(loid)s-contaminated soils, especially when combined with plant growth-promoting bacteria. Forty-one bacterial strains were isolated from the rhizosphere soils and roots tissue of five dominant plants (Artemisia argyi Levl., Gladiolus gandavensis Vaniot Houtt, Boehmeria nivea L., Veronica didyma Tenore, and Miscanthus floridulus Lab.) colonizing a cadmium (Cd)-contaminated mining area (Huayuan, Hunan, China). We subsequently tested their plant growth-promoting (PGP) traits (e.g., production of indole-3-acetic acid, siderophore, and 1-aminocyclopropane-1-carboxylate deaminase) and Cd tolerance. Among bacteria, two strains, Klebsiella michiganensis TS8 and Lelliottia jeotgali MR2, presented higher Cd tolerance and showed the best results regarding in vitro growth-promoting traits. In the subsequent pot experiments using soil spiked with 10 mg Cd·kg−1, we investigated the effects of TS8 and MR2 strains on soil Cd phytoremediation when combined with M. floridulus (Lab.). After sixty days of planting M. floridulus (Lab.), we found that TS8 increased plant height by 39.9%, dry weight of leaves by 99.1%, and the total Cd in the rhizosphere soil was reduced by 49.2%. Although MR2 had no significant effects on the efficiency of phytoremediation, it significantly enhanced the Cd translocation from the root to the aboveground tissues (translocation factor > 1). The combination of K. michiganensis TS8 and M. floridulus (Lab.) may be an effective method to remediate Cd-contaminated soils, while the inoculation of L. jeotgali MR2 may be used to enhance the phytoextraction potential of M. floridulus.


2021 ◽  
Vol 9 (8) ◽  
pp. 1588
Author(s):  
Anastasia Venieraki ◽  
Styliani N. Chorianopoulou ◽  
Panagiotis Katinakis ◽  
Dimitris L. Bouranis

Plant growth promoting rhizobacteria (PGPR) can be functional microbial fertilizers and/or biological control agents, contributing to an eco-spirit and safe solution for chemical replacement. Therefore, we have isolated rhizospheric arylsulfatase (ARS)-producing bacteria, belonging to Pseudomonas and Bacillus genus, from durum wheat crop grown on calcareous soil. These isolates harbouring plant growth promoting (PGP) traits were further evaluated in vitro for additional PGP traits, including indole compounds production and biocontrol activity against phytopathogens, limiting the group of multi-trait strains to eight. The selected bacterial strains were further evaluated for PGP attributes associated with biofilm formation, compatibility, salt tolerance ability and effect on plant growth. In vitro studies demonstrated that the multi-trait isolates, Bacillus (1.SG.7, 5.SG.3) and Pseudomonas (2.SG.20, 2.C.19) strains, enhanced the lateral roots abundance and shoots biomass, mitigated salinity stress, suggesting the utility of beneficial ARS-producing bacteria as potential microbial fertilizers. Furthermore, in vitro studies demonstrated that compatible combinations of multi-trait isolates, Bacillus sp. 1.SG.7 in a mixture coupled with 5.SG.3, and 2.C.19 with 5.SG.3 belonging to Bacillus and Pseudomonas, respectively, may enhance plant growth as compared to single inoculants.


2020 ◽  
Vol 4 (1) ◽  
pp. 229-238
Author(s):  
Dayang Rahmanita Simanjuntak ◽  
Halimursyadah Halimursyadah ◽  
Syamsuddin Syamsuddin

Abstrak. Biological seed treatment merupakan salah satu perlakuan benih menggunakan mikroorganisme seperti rizobakteri pemacu pertumbuhan tanaman (RPPT). Penelitian ini bertujuan untuk mengetahui jenis rizobakteri dan kerapatan inokulum yang dapat meningkatkan viabilitas dan vigor benih cabai kadaluarsa. Penelitian ini menggunakan Rancangan Acak Lengkap (RAL) pola faktorial dengan 2 faktor dan 3 ulangan. Faktor pertama adalah jenis rizobakteri (R) terdiri atas lima taraf yaitu R1: Necercia sp; R2:Bacillus polymixa; R3: Actinobacillus suis; R4: Azotobacter sp; R5: Pseudomonas capacia. Faktor kedua adalah kerapatan inokulum rizobakteri terdiri dari tiga taraf yaitu K1: 107 cfu/ml; K2: 108 cfu/ml; K3: 109 cfu/ml. Hasil penelitian ini menunjukkan bahwa perlakuan benih menggunakan rizobakteri jenis Necercia sp dengan kerapatan inokulum 108 cfu/ml nyata meningkatkan vigor benih pada tolok ukur  indeks vigor yaitu 40% dan Pseudomonas capacia dengan kerapatan inokulum 109 cfu/ml juga merupakan kombinasi perlakuan terbaik dalam meningkatkan berat kering kecambah normal yaitu 69,33 mg.Treatment Of Plant Growth Promoting Rhizobacteria (PGPR)With Multiple Levels of Rhizobacteria Inoculum Density On Viability and Vigor Of Expired Red Chilli Seeds (Capsicum annuum L.Abstract. Biological seed treatment is one of the seed treatment using microorganisms such as plant growth-promoting rhizobacteria (PGPR). This study aims to determine the type of rhizobacteria and inoculum density that can increase the viability and vigor of expired chili seeds. This research uses Completely Randomized Design (CRD) factorial pattern with 2 factors and 3 replications. The first factor is the type of rhizobacteria (R) consists of five levels, namely R1: Necercia sp; R2: Bacillus polymixa; R3: Actinobacillus suis; R4: Azotobacter sp; R5: Pseudomonas capacia. The second factor is the density of rhizobacteria inoculum consisting of three levels namely K1: 107 cfu/ml; K2: 108 cfu/ml; K3: 109 cfu/ml. The results of this study showed that the seed treatment using the Necercia sp-type rizobacteria with 108 cfu/ml inoculum density significantly increased the seed vigor on the vigor index benchmark of 40% and Pseudomonas capacia with 109cfu/ml inoculum density was also the best treatment combination in increasing dry weight normal sprout is 69,33 mg. 


OENO One ◽  
2021 ◽  
Vol 55 (4) ◽  
pp. 145-157
Author(s):  
Mónica Oyuela Aguilar ◽  
Florencia Álvarez ◽  
Daniela Medeot ◽  
Edgardo Jofré ◽  
Liliana Semorile ◽  
...  

The rhizosphere-associated microbiome has diverse functions that support plant growth and health, varying among plant species, vegetation growth stages and environmental habitats. This microbiome includes a group of bacteria denominated plant growth-promoting rhizobacteria (PGPR) which can colonize plant roots. Certain PGPR isolates improve the ability of plants to adapt to a stressful environment. In this study, we collected and characterised the rhizosphere-associated bacteria, or epiphytic rhizobacteria, from Malbec and Cabernet-Sauvignon vineyards from the main wine-producing provinces of Argentina to analyse their potential use as biologic fertilisers and/or as pathogen-control agents. A total of 170 bacterial isolates were obtained, distributed into eleven different genera and classified into three phyla, Proteobacteria, Actinobacteria and Firmicutes. The in vitro analysis for plant-growth-promoting (PGP) activities demonstrated that a significant number of bacterial isolates had one or more of these traits. The Pseudomonas was the genus with the highest number of isolates and PGP activities, followed by the Arthrobacter, Serratia, Bacillus andPantoea. We observed that bacterial isolates identified as Bacillus exhibited a remarkable production of hydrolytic enzymes related to biocontrol activities. Biocontrol trials from the Bacillus collection revealed that at least five isolates were able to inhibit the fungal growth of Botrytis cinerea and Alternaria alternata. The results obtained suggest the biological potential of each isolate and the relevance of proceeding to greenhouse and field assays to obtain long-term environmentally compatible bio-products for vineyard management.


Sign in / Sign up

Export Citation Format

Share Document