scholarly journals Rapid assessment of perfect time for transferring wells to water injection for pressure maintenance in low-permeable sediments of Tyumen suite of LLC «RN-Uvatneftegas» oilfields

2021 ◽  
Vol 931 (1) ◽  
pp. 012003
Author(s):  
B S Shevchenko ◽  
R R Ziazev

Abstract A significant part of the initial geological reserves of LLC “RN-Uvatneftegas” oilfields are concentrated in deposits with abnormally low reservoir properties (porosity, permeability). The organization strategy of pressure maintenance of such oilfields significantly affect to the economic profitability of the reservoir development. One of the major tasks to achieve this goal is to determine the perfect time for application injection wells in oil production before forming the pressure maintenance system. Often, the solution to this issue turns out to be labor-intensive. In this regard, the analytical tool has been developed that allows rapidly assess the perfect time for transferring wells to water injection for pressure maintenance forming. The developed tool is based on a statistical analysis of the decline rate of horizontal wells fluid rates at the RN-Uvatneftegas oilfields. And also a comparative analysis of the results of the developed tool and other existing methods was carried out. The analysis showed that the developed tool is distinguished by its accuracy, simplicity and efficiency of work.

2017 ◽  
Vol 5 (1) ◽  
pp. 37 ◽  
Author(s):  
Inyang Namdie ◽  
Idara Akpabio ◽  
Agbasi Okechukwu .E.

Bonga oil field is located 120km (75mi) southeast of the Niger Delta, Nigeria. It is a subsea type development located about 3500ft water depth and has produced over 330 mmstb of hydrocarbon till date with over 16 oil producing and water injection wells. The producing formation is the Middle to Late Miocene unconsolidated turbidite sandstones with lateral and vertical homogeneities in reservoir properties. This work, analysis the petrophysical properties of the reservoir units for the purpose of modeling the effect of shale content on permeability in the reservoir. Turbidite sandstones are identified by gamma-ray log signatures as intervals with 26-50 API, while sonic, neutron, resistivity, caliper and other log data are applied to estimate volume of shale ranging between 0.972 v/v for shale intervals and 0.0549 v/v for turbidite sands, water saturation of 0.34 v/v average in most sand intervals, porosity range from 0.010 for shale intervals to 0.49 v/v for clean sands and permeability values for the send interval 11.46 to2634mD, for intervals between 7100 to 9100 ft., Data were analyzed using the Interactive Petrophysical software that splits the whole curve into sand and shale zones and estimates among other petrophysical parameters the shale contents of the prospective zones. While Seismic data revealed reservoir thickness ranging from 25ft to over 140ft well log data within the five wells have identified sands of similar thickness and estimated average permeability of700mD. Within the sand units across the five wells, cross plots of estimated porosity, volume of shale and permeability values reveal strong dependence of permeability on shale volume and a general decrease in permeability in intervals with shale volume. It is concluded that sand units with high shale contents that are from0.500 to0.900v/v will not provide good quality reservoir in the field.


1991 ◽  
Vol 14 (1) ◽  
pp. 347-352 ◽  
Author(s):  
P. L. Cutts

AbstractThe Maureen Oilfield is located on a fault-bounded terrace in Block 16/29a of the UK Sector of the North Sea, at the intersection of the South Viking Graben and the eastern Witch Ground Graben. The field was discovered in late 1972 by the 16/29-1 well, and was confirmed by three further appraisal wells. The reservoir consists of submarine fan sandstones of the Palaeocene Maureen Formation, deposited by sediment gravity flows sourced from the East Shetland Platform. The Palaeocene sandstones, ranging from 140 to 400 ft in thickness, have good reservoir properties, with porosities ranging from 18-25% and permeabilities ranging from 30-3000 md. Hydrocarbons are trapped in a simple domal anticline, elongated NW-SE, which was formed at the Palaeocene level by Eocene/Oligocene-aged movement of underlying Permian salt. The reservoir sequence is sealed by Lista Formation claystones. Geochemical analysis suggests Upper Jurassic Kimmeridge Clay shales have been the source of Maureen hydrocarbons. Estimated recoverable reserves are 210 MMBBL. Twelve production wells have been drilled on the Maureen Field. A further seven water injection wells have been drilled to maintain reservoir pressure.


2011 ◽  
Vol 14 (06) ◽  
pp. 687-701 ◽  
Author(s):  
B.A.. A. Stenger ◽  
S.A.. A. Al-Kendi ◽  
A.F.. F. Al-Ameri ◽  
A.B.. B. Al-Katheeri

Summary This paper reviewed the interpretation of repeat pressure-falloff (PFO) tests acquired in two vertical pattern injectors operating in a carbonate reservoir undergoing full-field development. Enhanced vertical-sweep conformance through phase mobility control in the presence of strong reservoir heterogeneity was the major expected benefit from an immiscible water-alternating-gas (WAG) displacement mechanism. PFO tests were carried out during the monophasic injection phase to determine well injectivity and reservoir properties, and were subsequently acquired at the end of each 3-month injection cycle. Analytical falloff-test interpretation relied on the use of the two zone radial composite model. Multiple falloff-test interpretations indicated that the two pattern vertical injectors behaved differently even though both had been fractured. The difference in behavior was linked to different perforated intervals and reservoir properties. Gas- and water-injection rates were showing differences between both pattern injectors as a consequence. Injected gas banks had a small inner radius and were almost undetectable at the end of the subsequent water cycle. Changes in the pressure-derivative slope at the end of the subsequent water-injection cycle indicated most likely the creation of an effective mixing zone of injected gas and water in the reservoir. Numerical finite-volume simulation was required to account for potential injected-fluid segregation and the heterogeneous multilayered nature of the reservoir. Repeat saturation logs acquired in observation wells monitored the saturation distribution away from the injection wells. Fluid saturations derived from the simulation model were showing a good agreement with the analytical results in general, although the need to account for gas trapping was confirmed. Eight planned development WAG injectors were repositioned as a consequence of WAG 1 and WAG 2 pattern performance.


2013 ◽  
Vol 807-809 ◽  
pp. 2508-2513
Author(s):  
Qiang Wang ◽  
Wan Long Huang ◽  
Hai Min Xu

In pressure drop well test of the clasolite water injection well of Tahe oilfield, through nonlinear automatic fitting method in the multi-complex reservoir mode for water injection wells, we got layer permeability, skin factor, well bore storage coefficient and flood front radius, and then we calculated the residual oil saturation distribution. Through the examples of the four wells of Tahe oilfield analyzed by our software, we found that the method is one of the most powerful analysis tools.


2007 ◽  
Author(s):  
Christine S.H. Dalmazzone ◽  
Amandine Le Follotec ◽  
Annie Audibert-Hayet ◽  
Allan Jeffery Twynam ◽  
Hugues M. Poitrenaud

1998 ◽  
Author(s):  
I.A. Al-Ghamdi ◽  
A.A. Al-Hendi ◽  
O.J. Esmail

1991 ◽  
Vol 14 (1) ◽  
pp. 339-345 ◽  
Author(s):  
K. W. Glennie ◽  
L. A. Armstrong

AbstractKittiwake was discovered by well 21/18-2 within a 7th Round block, part of Production Licence P351. Highly undersaturated oil is present in the Fulmar Formation and Skagerrak Formation reservoir sequences; 70 MMBBL of reserves is in Fulmar sandstones whereas oil in the Skagerrak is mostly immovable. The field will be developed from a single 16-slot platform with initially 5 producing and 5 water-injection wells. Solution gas is removed via the Fulmar Field pipeline to St Fergus and, as from September 1990, the oil is loaded onto tankers from a single-buoy mooring.


Sign in / Sign up

Export Citation Format

Share Document